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Введение

Нейтронозахватная терапия (НЗТ) – ме-
тод бинарной лучевой терапии злокачествен-
ных новообразований, основанный на селек-
тивном поглощении опухолевыми клетками
препарата, содержащего дозоповышающий
агент (ДПА), – атомы изотопа с большим сече-
нием захвата тепловых нейтронов (например,
10B, 157Gd, 6Li), и последующем их облучении
эпитепловыми нейтронами [1]. Таким образом,
для успешной реализации НЗТ необходим ис-
точник эпитепловых нейтронов и препарат, со-
держащий ДПА.

В бор-нейтронозахватной терапии (БНЗТ)
в качестве ДПА используется стабильный изо-
топ 10В. Взаимодействие 10B с эпитепловыми
нейтронами приводит к ядерной реакции:

10B + 1n  [11B]*  7Li + a + g (0,48 МэВ)

Образовавшиеся в результате реакции
частицы – a-частица и ядро 7Li – имеют пробег
не более 10 мкм, что сопоставимо с размерами
опухолевой клетки. Таким образом, БНЗТ поз-
воляет селективно уничтожать опухолевые
клетки, в которых накопился борсодержащий
препарат, оставляя неповрежденными здоро-
вые ткани [2].

В настоящее время единственным ле-
карственным препаратом для БНЗТ, разрешен-
ным для клинического применения, является
лекарственный препарат Steboronine™, заре-
гистрированный в Японии и представляющий
собой инфузионный комплекс борфенилалани-
на (БФА) с D-сорбитом [3]. БНЗТ с БФА имеет в
Японии статус штатной медицинской процеду-
ры, а в Китае, Корее и России находится на ста-
дии клинических исследований. Чаще всего
БНЗТ с БФА применяется для лечения злокаче-
ственных опухолей головного мозга, опухолей
головы и шеи, реже – меланом кожи [4–6].

Большая часть дозы, получаемая пациен-
том при проведении БНЗТ, связана с ядерной
реакцией 10B(n,a)7Li (“борная доза”) (рис. 1).
“Борная доза” пропорциональна произведению
концентрации 10B в ткани или органе на поток
нейтронов в этой точке. На “борную дозу”
приходится от 80 % до 95 % всей поглощенной
дозы в зависимости от концентрации ДПА [7,
8], поэтому для дозиметрического планирова-
ния БНЗТ необходимо знать количественное
распределение 10B в организме.

Избирательность и эффективность на-
копления БФА в опухоли может существенно
варьироваться у разных пациентов. Так как

БНЗТ – сложная и дорогостоящая процедура, то
этап предварительного отбора пациентов на
терапию по критерию эффективности накопле-
ния БФА имеет важное значение.

Таким образом, для успешной БНЗТ не-
обходим такой метод оценки распределения 10B
в организме пациента, который одновременно
обеспечивал бы возможность отбора пациентов
на терапию и предоставлял данные, позволяю-
щие провести дозиметрическое планирование
терапии.

В сложившейся мировой клинической
практике проведения БНЗТ с БФА во время ин-
фузии препарата у пациента берут пробы кро-
ви для определения в них концентрации 10B ме-
тодом атомно-эмиссионной спектроскопии с
индуктивно-связанной плазмой (ИСП-АЭС) или
методом масс-спектрометрии с индуктивно-
связанной плазмой (ИСП-МС) [9]. Значения
концентрации 10B в крови используются для
оценки концентрации 10B в опухоли и нормаль-
ных тканях. Для этого используются ранее по-
лученные эмпирические соотношения кон-
центраций опухоль/кровь и нормальная
ткань/кровь.

В ряде исследований БНЗТ с БФА для
лечения глиобластом соотношение накопления
10B в опухоли к накоплению 10B в нормальной
ткани было принято равным 3,5 на основании
более ранних исследований гистологических
образцов аналогичных типов тканей [10, 11]. В
японском исследовании эффективности БНЗТ
с БФА, проведенном в период с 2003 по 2014 гг.,
для лечения меланомы кожи соотношения опу-
холь/кровь и нормальная ткань/кровь были
приняты равными 3 и 1,3 соответственно на
основании данных о соотношении концентра-
ции 10B в меланоме, нормальной коже и крови у
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Рис. 1. Распределение компонент поглощенной дозы
для некоторых тканей при проведении БНЗТ (адап-
тировано из [7])
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пациентов, перенесших хирургические
операции и/или биопсию кожи в 1999 г. [12].
Концентрация 10B в опухоли равна произведе-
нию концентрации 10B в крови на отношение
опухоль/кровь.

Несмотря на простоту и скорость реали-
зации, вышеописанный метод определения 10B
имеет ряд недостатков. Во-первых, метод оцен-
ки концентрации 10B в опухоли по концентра-
ции 10B в крови не измеряет концентрацию 10B
непосредственно в ткани интереса, а дает лишь
опосредованную оценку. Во-вторых, метод
определения 10B в опухоли по концентрации 10B
в крови не позволяет учесть гетерогенность
пространственного распределения БФА как в
опухолевых, так и в нормальных тканях.

Так, в исследованиях [13, 14] у пациентов
с мультиформной глиобластомой измеряли
концентрацию 10B в образцах опухоли, отобран-
ных во время хирургической операции перед
БНЗТ. Результаты исследований показали, что
среднее соотношение опухоль/кровь варьиро-
вало от 1,4 до 4 у разных пациентов. Более того,
исследователи отметили значительную не-
однородность распределения 10B в опухоли у од-
ного и того же пациента. Так, у одного из паци-
ентов концентрация 10B в опухоли варьи ро ва ла
от 2,7 до 36,8 мкг 10B/г при вве де нии БФА в дозе
210 мг/кг веса.

Таким образом, существует необходи-
мость разработки новых неинвазивных мето-
дов количественной оценки распределения 10B
в опухолевых и нормальных тканях пациента,
обеспечивающих определение не только соот-
ношения опухоль/нормальная ткань, но про-
странственное распределение 10B в каждом от-
дельном органе и опухоли. В качестве методов
прижизненной оценки концентрации и распре-
деления 10B в организме пациента для решения
задач отбора пациентов на терапию и дозимет-
рического планирования целесообразно ис-
пользовать существующие методы лучевой ди-
агностики.

МРТ

В конце 1980-х гг. американскими учены-
ми была предложена магнитно-резонансная
томография (МРТ) в качестве метода неинва-
зивной оценки концентрации 10B [15]. МРТ –
широко распространенный метод медицин-
ской визуализации, обеспечивающий высокое
пространственное и контрастное разрешение,

а также не сопряжённый с лучевой нагрузкой
на пациента.

Атомы 10B и 11B можно визуализировать
методом МРТ [16, 17]. Однако из-за короткого
времени релаксации атомов бора их визуализа-
ция методом МРТ сопряжена с рядом техниче-
ских сложностей: для этого необходимы отдель-
ные приемно-передающие катушки, а также
специальные протоколы набора данных. Более
того, чувствительность метода и простран-
ственное разрешение ограничены: отношение
сигнал/шум около пяти при размере воксела
7,5 мм3 [16].

Более предпочтительным нуклидом для
визуализации представляется 19F, гиромагнит-
ное отношение которого близко к ги ро маг нит -
но му отношению 1H (gF=40,05 МГц/Тл,

gH=42,58 МГц/Тл). БФА имеет аналог – 19F-БФА,

распределение которого в организме можно ви-
зуализировать методом МРТ [18].

Было проведено исследование, показы-
вающее эквивалентность распределений БФА и
19F-БФА в организме лабораторных мышей с пе-
ревитой опухолью SCC-VII. В рамках экспери-
мента сравнивали два пути введения при оди-
наковых дозах: подкожное болюсное введение
и подкожная инфузия. Никаких принципиаль-
ных различий в концентрации 10B в тканях и
органах, измеренной методом ИСП-АЭС, не на-
блюдалось. Однако группа с инфузионным вве-
дением показала меньшее соотношение ор-
ган/кровь, в то время как отношения опу-
холь/здоровый мозг, опухоль/язык, опу -
холь/мыш ца были выше в группе с инфузион-
ным введением [19].

Группой итальянских ученых была пока-
зана принципиальная возможность визуализа-
ции распределения 19F-БФА методом МРТ в ор-
ганизме крыс с перевитой опухолью С6 [20]. Ис-
следование было проведено на томографе 7 Тл в
течение 4 ч через 2 ч после прекращения ин-
фузии 19F-БФА. Было показано, что наиболь-
шая концентрация 19F-БФА наблюдалась через
2,5 ч после завершения инфузии.

Таким образом, МРТ является потенци-
альным методом для качественного отбора па-
циентов на БНЗТ, поскольку обеспечивает ви-
зуализацию распределения борсодержащего
препарата 19F-БФА. Однако данные, получен-
ные таким методом, не могут быть использова-
ны для планирования терапии ввиду фунда-
ментальных ограничений: МРТ не является ко-
личественным методом, поскольку перед каж-
дым исследованием проводится калибровка ка-
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тушек в зависимости от характеристик объ-
екта, помещенного в магнитное поле.

Потенциальными агентами для оценки
распределения борсодержащих препаратов мо-
гут стать конъюгаты гадолиния и бора, по-
скольку гадолинийсодержащие контрастные
средства рутинно применяются в МРТ. На сего-
дняшний день ведутся работы по созданию
конъюгатов гадолиния и борсодержащих ве-
ществ, однако такие работы не выходят за рам-
ки экспериментальных [21–23].

ПЭТ

Наиболее развитым методом прижизнен-
ной оценки распределения БФА является пози-
тронная эмиссионная томография (ПЭТ) с ра-
диоактивным аналогом БФА – 18F-БФА. Радио-
фармацевтический лекарственный препарат
(РФЛП) бор-2-18F-фтор-L-фенилаланин (18F-
БФА) был разработан в 1991 г. как радиоактив-
ный аналог БФА с целью визуализации распре-
деления БФА и оценки его фармакокинетики in
vivo, а также для отбора пациентов на БНЗТ
(рис. 2) [24]. Первые исследования 18F-БФА на
животных были проведены в начале 1990-х гг.:
методом авторадиографии было показано на-
копление 18F-БФА в мышиной карциноме FM3A
и в мышиной меланоме B16 [25, 26]. Несмотря
на долгую историю, 18F-БФА до сих пор не имеет
ни в одной стране мира статуса официально
разрешенного для клинического применения
лекарственного препарата.

БФА попадает в живую клетку посред-
ством системы переносчиков аминокислот LAT
(large amino transporter). Так, в статье [28] пока-
зано, что БФА попадает в клетки крысиной
глиомы 9L через LAT систему. В исследовании
[29] продемонстрировано, что наибольший
вклад в перенос БФА вносят транспортеры LAT-
1 и LAT-2, а также переносчик аминокислот
ATB0,+.

Подобные исследования были проведены
и для 18F-БФА. Так, Yoshimoto et al. на трехкле-
точных линиях человеческой глиобластомы
показали, что 74,5–81,1 % 18F-БФА попадает в
клетку через LAT систему [30]. Watabe et al. по-
казали специфичность 18F-БФА к системе LAT-1
на клетках эмбриональной почки человека
HEK293, стабильно экспрессирующих LAT-1 и
LAT-2 [31]. В исследовании [32] была продемон-
стрирована умеренная корреляция между на-
коплением 18F-БФА и интенсивностью экспрес-

сии LAT-1 у пациентов с опухолями головы и
шеи. В то же время авторы предполагают, что
интенсивность экспрессии LAT-1 может быть
предиктором ответа на терапию.

18F-БФА, будучи искусственной аминокис-
лотой, не участвует в синтезе белков, и, как
следствие, не метаболизируется, так же, как и
БФА. Так, Grunewald et al. исследовали метабо-
литы плазмы крови мышей после введения 18F-
БФА. Было показано, что через 60 минут после
введения РФЛП в плазме более 96 % 18F-БФА
остается неизменным [33]. На трех группах па-
циентов показано, что неизмененный 18F-БФА
составляет более 94 % в плазме крови до
50 мин [34], что позволяет сделать вывод о ста-
бильности 18F-БФА в организме человека. Ана-
логичный результат был получен в исследова-
нии [35]: показано, что метаболиты 18F-БФА в
крови здоровых волонтеров через 20 и 50 ми-
нут после инъекции/начала инфузии со став -
ля ют 2,324 % и 3,966 % соответственно, что
также говорит о высокой стабильности 18F-БФА
в организме человека.

Группой японских ученых были оценены
эффективные поглощенные дозы ПЭТ с 18F-БФА
на основании данных, полученных на 9
здоровых волонтерах: 15 мкЗв/МБк (n=6) для
взрослых пациентов и 25 мкЗв/МБк (n=3) для
педиатрических пациентов. Для сравнения эф-
фективные поглощенные дозы ПЭТ с 18F-ФДГ
составили: 19 мкЗв/МБк для взрослых па ци ен -
тов и 37 мкЗв/МБк для педиатрических паци-
ентов [36]. В работе [37] Yang et al. сравнивали
эффективную дозу ПЭТ с L-изомером и с D-изо-
мером 18F-БФА, которая составила
20 мкЗв/МБк и 26 мкЗв/МБк соответственно.

ПЭТ с 18F-БФА может служить нескольким
целям: отбор пациентов на БНЗТ; предоставле-
ние информации о распределении БФА, кото-
рая может быть использована для дозиметри-
ческого планирования БНЗТ; оценка терапев-
тического эффекта от БНЗТ. Считается, что для
успешной БНЗТ необходимо накопление бора в
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Рис. 2. Структурная формула БФА (А) и 18F-БФА (Б)
(адаптировано из [27])
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количестве ~20–35 мг 10B/г ткани и соотноше-
ние опухоль/нормальная ткань должно быть не
менее 3 [38]. Оценку этого соотношения можно
провести с помощью ПЭТ с 18F-БФА.

Первые клинические исследования 18F-
БФА были проведены в Японии в начале 1990-х
годов на пациентах с опухолями головного моз-
га, в первую очередь, глиомами высокой степе-
ни злокачественности [39] и злокачественны-
ми меланомами [40]. Потенциал динамической
ПЭТ с 18F-БФА для отбора пациентов на БНЗТ
был впервые постулирован в работах Imahori et
al. Распределение 18F-БФА в организме пациен-
тов со злокачественной меланомой исследова-
ли Mishima et al., и они же первыми предполо-
жили, что ПЭТ с 18F-БФА можно использовать
для предсказания накопления 10B как в опухо-
ли, так и в нормальных тканях. К аналогичным
выводам пришли американские ученые, изу-
чавшие динамику распределения 18F-БФА в ор-
ганизме пациентов с мультиформной глиобла-
стомой. Также они высказали предположение о
том, что на основании данных о распределении
18F-БФА можно рассчитать не только дозу, полу-
чаемую пациентом при БНЗТ, но и оптималь-
ное время облучения [41].

Как было сказано ранее, БНЗТ c БФА мо-
жет быть полезна при лечении рецидивирую-
щих опухолей головы и шеи. Первые исследова-
ния, показавшие пригодность ПЭТ с 18F-БФА
для отбора пациентов с опухолями головы и
шеи на БНЗТ, были проведены в Японии в
2005 г. Пациентке с рецидивирующим раком
подчелюстной слюнной железы была проведе-
на ПЭТ с 18F-БФА, соотношение опухоль/нор-
мальная ткань составило 2,9, на основании че-
го пациентке было назначено лечение методом
БНЗТ. После проведения БНЗТ на исследова-
тельском реакторе в Киото у пациентки в тече-
ние как минимум полутора лет не наблюдалось
ни рецидива, ни осложнений [42].

Ariyoshi et al. продемонстрировали при-
годность ПЭТ с 18F-БФА для отбора на БНЗТ па-
циентов с рецидивирующим раком полости рта
и метастазами в шейные лимфатические узлы
[43]. При дозиметрическом планировании
БНЗТ для этих пациентов были использованы
соотношения опухоль/нормальная ткань, по-
лученные из данных ПЭТ с 18F-БФА. Этой же
группой авторов позже были проанализирова-
ны ПЭТ-изображения с 18F-БФА восьми пациен-
тов с подтвержденным раком ротовой полости.
Было показано, что в шести из восьми случаев
в опухоли наблюдается максимальное накопле-

ние РФЛП, однако в двух случаях максималь-
ным было накопление в спинке языка. Таким
образом, авторы отмечают, что при диагности-
ке и/или отборе пациентов на БНЗТ с помощью
ПЭТ с 18F-БФА нужно учитывать особенности
распределения препарата в структурах че-
люстно-лицевой области [44].

Также показан потенциал ПЭТ с 18F-БФА
для диагностики связанных с нейрофиброма-
тозом второго типа менингиом и шванном. Ис-
следование было проведено финскими
учеными в 2006 г. Было показано, что ПЭТ с 18F-
БФА может быть полезна как для диагностики,
так и для отбора на БНЗТ пациентов с менин-
гиомами и шванномами, ассоциированными с
нейрофиброматозом второго типа: соотноше-
ние опухоль/здоровый мозг у этих пациентов
находилось в пределах 1,8–5,4, в то время как у
пациентов с опухолями, не ассоциированными
с нейрофиброматозом второго типа, – (1–1,4)
[45].

В тайваньском исследовании лечения
опухолей головного мозга с помощью БНЗТ от-
ношение опухоль/нормальная ткань определя-
ли как соотношение SUVопухоль/SUVнормальная ткань

(SUV – стандартизированный уровень накопле-
ния), оцененное с помощью ПЭТ с 18F-БФА [46].

Идея о том, что по данным о распределе-
нии 18F-БФА можно предсказать распределение
БФА в организме пациента, основана на их
фармакологической схожести. Сразу после
изобретения 18F-БФА Ishawata et al. провели ис-
следование, цель которого состояла в доказа-
тельстве фармакологической схожести БФА и
его радиоактивного аналога. Распределение
препаратов оценивали на мышах с перевитой
меланомой B16 и на хомяках с меланомой Гри-
на. Распределение 18F-БФА оценивали методом
ПЭТ, распределение БФА – методом ИСП-АЭС.
Результаты исследования показали, что при ис-
пользовании ПЭТ происходит недооценка кон-
центрации 10B в крови и в мышечной ткани [47].

Wang et al. показали на крысах с глиомой
F98, что динамика изменения концентрации
18F-БФА и БФА в опухоли и в здоровой ткани
мозга похожа. Также совпало и время достиже-
ния максимальной концентрации препарата –
1 час после введения. Измерение концентра-
ции 18F-БФА проводили методом прямой радио-
метрии, а БФА – методом ИСП-МС. Методом ав-
торадиографии было продемонстрировано со-
ответствие между накоплением 18F-БФА и лока-
лизацией глиомы. Однако, как и в статье
Ishawata et al., авторы отмечают расхождение
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соотношений концентраций опухоль/кровь
для БФА и 18F-БФА [48].

Ещё одно исследование фармакологиче-
ской схожести 18F-БФА и БФА было проведено в
2014 г. авторами Hanaoka et al. на крысах с ге-
теротопической глиомой RGC6. Протокол ис-
следования состоял из двух этапов: сначала
крысам внутривенно вводили 18F-БФА в диаг -
нос ти чес кой дозе (1,7 мг/кг), проводили
ПЭТ/КТ, через час после ПЭТ/КТ крысам был
внутривенно введен БФА в терапевтической
дозе (167 мг/кг), после чего крысы были эвта-
назированы. Оценку динамики изменения 18F-
БФА проводили методом ПЭТ/КТ, БФА – мето-
дом ИСП-АЭС. Была показана значительная
положительная корреляция между накоплени-
ем 18F-БФА и БФА в органах и тканях, включая
опухоль и кровь [49].

Позднее этой же группой авторов была
предложена формула для пересчета SUV, полу-
ченных из ПЭТ с 18F-БФА, в значения концент-
рации 10B при введении терапевтической дозы
БФА (мг/кг):

10B = 0,0478  10БФА (мг/кг)  SUV (18F-БФА)

Однако авторы отмечают, что разрабо-
танная формула применима только к данным,
полученным на лабораторных грызунах и тре-
бует уточнения для животных других отрядов
[50].

Grunewald et al. исследовали распределе-
ние БФА и 18F-БФА на мышах с перевитой гепа-
тоцеллюлярной карциномой HuH-7. Накопле-
ние БФА оценивали методом экспресс-гамма-
активационного анализа и методом количе-
ственной нейтронозахватной радиографии,
18F-БФА – методом ПЭТ и прямой радиометрии.
Была показана эквивалентность распределе-
ния препаратов, а также значительная поло-
жительная корреляция динамики изменения
концентрации 10B в органах и тканях [33].

В ходе исследования, проведённого Lin et
al., было установлено, что у мышей с ортотопи-
ческой опухолью языка SAS отношение опу-
холь/нормальная ткань для 18F-БФА через 60
минут после введения препарата составляет
3,5, а для БФА это соотношение составило 3,43.
Распределение 18F-БФА оценивали методом
ПЭТ, распределение БФА – методом ИСП-АЭС
[51].

В 2016 г. Shimosegawa et al. предложили
метод определения концентрации 10B при вве-
дении терапевтической дозы по данным о рас-
пределении 18F-БФА в организме пациента. В

рамках этого исследования было сделано пред-
положение, что 18F-БФА и БФА ведут себя в ор-
ганизме как идентичные соединения, незави-
симо от введенной дозы. Авторы также разра-
ботали алгоритм для пересчёта данных об ак-
тивности 18F-БФА в концентрацию 10B при вве-
дении терапевтической дозы БФА. Несмотря на
всю привлекательность и простоту предложен-
ного метода, в настоящее время он не верифи-
цирован [52].

Nariai et al. продемонстрировали, что у
пациентов со злокачественными опухолями го-
ловного мозга соотношение опухоль/кровь для
18F-БФА после болюсной инъекции имеет
значительную линейную корреляцию с соотно-
шением опухоль/кровь для БФА после часовой
непрерывной инфузии (расчёт методом Рунге-
Кутта). Хотя на данный момент такой метод
оценки содержания 10B в тканях пока не ис-
пользуется, он может оказаться весьма полез-
ным [53].

Таким образом, ПЭТ с 18F-БФА является
наиболее развитым и перспективным методом
как для отбора пациентов на БНЗТ, так и для
получения данных для дозиметрического пла-
нирования. Основной недостаток ПЭТ – радиа-
ционная нагрузка – не столь значим в контекс-
те использования ПЭТ для БНЗТ, поскольку са-
ма БНЗТ является процедурой, сопряженной с
лучевой нагрузкой.

Несмотря на перспективность ПЭТ с 18F-
БФА для оценки накопления БФА в тканях па-
циента, 18F-БФА не является разрешенным для
клинического применения штатным РФЛП и
доступен не всем медицинским центрам, где
проводится или планируется проведение БНЗТ
с БФА. Поэтому для отбора пациентов на БНЗТ
потенциально можно было бы использовать
другие аминокислоты, меченные радионукли-
дами. На эту роль были предложены 11C-метио-
нин и 18F-тирозин, поскольку эти аминокисло-
ты имеют схожий с БФА механизм накопления:
так же, как и БФА, они проникают в клетку по-
средством LAT системы.

Метионин является незаменимой амино-
кислотой, которая участвует в синтезе белков.
Меченный 11C метионин используется в клини-
ческой практике для диагностики опухолей го-
ловного мозга. Существует три причины повы-
шенного поглощения 11C-метионина опухоле-
выми клетками. Во-первых, 11C-метионин по-
падает в клетки через LAT систему и натрий-за-
висимую транспортную систему. Этот актив-
ный транспорт зависит от пролиферативной
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активности клеток и степени злокачественно-
сти опухоли. Во-вторых, накопление 11C-метио-
нина зависит от степени васкуляризации опу-
холи. В-третьих, нарушение гематоэнцефали-
ческого барьера, происходящее при внутриче-
репных злокачественных поражениях, также
способствует повышенному накоплению 11C-
метионина [54, 55].

В работе [56] Watabe et al. сравнивали ре-
зультаты ПЭТ с 18F-БФА и 11C-метионином у се-
ми пациентов с опухолями головы и шеи. Авто-
ры показали значительную положительную
корреляцию между значениями SUVmax для 18F-

БФА и 11C-метионина. Авторы предполагают,
что ПЭТ с 11C-метионином можно использовать
для отбора пациентов на БНЗТ. Однако из-за
повышенного накопления 11C-метионина в не-
которых нормальных тканях, таких как подче-
люстные слюнные железы, сердце, желудок, пе-
чень, селезёнка, поджелудочная железа и кост-
ный мозг, его нельзя использовать для плани-
рования БНЗТ и оценки дозовых нагрузок.

18F-тирозин активно применяется в кли-
нической практике для визуализации доброка-
чественных и злокачественных новообразова-
ний головного мозга. Wang et al. показали схо-
жесть накопления 18F-БФА и 18F-тирозина на
крысах с ортотопической глиомой F98. Однако
авторы отмечают, что  накопление 18F-тирози-
на в опухоли и в здоровой ткани мозга было вы-
ше, чем накопление 18F-БФА [57]. В то же время,
отношение опухоль/нормальная ткань выше
для 18F-БФА. По сравнению с 11C-метионином
18F-тирозин обладает следующими преимуще-
ствами: практически не метаболизируется, не
накапливается в здоровой ткани мозга и обла-
дает быстрым клиренсом. Однако 18F-тирозин
не идентичен БФА и не пригоден для планиро-
вания БНЗТ, хотя и может быть альтернатив-
ным инструментом для отбора пациентов на
терапию [58].

Несмотря на ряд очевидных преиму-
ществ, ПЭТ также обладает и рядом недостат-
ков, которые нужно учитывать при использова-
нии ее для отбора пациентов на БНЗТ и дози-
метрического планирования. Так, технология
ПЭТ не может быть реализована непосред-
ственно во время проведения БНЗТ, поэтому
получить данные о распределении борсодержа-
щего препарата можно только перед проведе-
нием терапии. Во-вторых, ПЭТ обладает худ-
шим пространственным разрешением по
сравнению с КТ или МРТ. В-третьих, оценка на-
копления РФЛП в структурах, объем которых

не превышает 1 см3, может быть занижена из-

за так называемого эффекта частичного объе-

ма и требует дополнительного изучения [59].

Выводы

БНЗТ с БФА является сложной, дорого-

стоящей процедурой, поэтому для успешной

БНЗТ необходимо как правильно отобрать па-

циентов на терапию, так и получить данные о

распределении БФА в организме пациента для

дозиметрического планирования. В настоящее

время в клинической практике содержание 10B

в опухолевых и нормальных тканях оценивают

по концентрации 10B в крови, однако этот метод

не учитывает гетерогенность распределения

препарата, и, как следствие, может приводить

к недо- или переоценке поглощенной дозы.

МРТ с 19F-БФА может быть полезна для от-

бора пациентов на терапию, но не для получе-

ния данных для дозиметрического планирова-

ния. Аналогично и ПЭТ с 11C-метионином и 18F-

тирозином могут быть ограниченно использо-

ваны для отбора пациентов на терапию, однако

данные о распределении этих препаратов не

могут быть использованы для дозиметрическо-

го планирования.

Наиболее развитым и перспективным ме-

тодом количественной оценки 10B является ПЭТ

с 18F-БФА – радиоактивным аналогом БФА. Дан-

ные, полученные таким методом, позволяют

как отобрать пациентов на БНЗТ, так и могут

быть положены в основу индивидуального до-

зиметрического планирования. Рядом исследо-

ваний подтверждена пригодность 18F-БФА для

отбора пациентов на БНЗТ, а также продемон-

стрирована фармакологическая схожесть 18F-

БФА и БФА, что позволяет 18F-БФА быть предик-

тором распределения БФА.

Также важно отметить, что все описан-

ные методы оценки концентрации 10В в тканях

пригодны только для оценки распределения 10В

в составе БФА. Для оценки распределения дру-

гих борсодержащих препаратов необходимо

разрабатывать другие подходы.
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