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Реферат

Цель: Получить предварительную оценку возможностей применения трёхклассовой архитекту-
ры сверточной нейронной сети (CNN) для снижения вероятности получения ложноположитель-
ных и ложноотрицательных заключений при дифференциальной диагностике туберкулеза и ра-
ка легких за счет выделения в отдельный класс нетипичных для данных заболеваний изображе-
ний.

Материал и методы: Исследования проводились путем вычислительного эксперимента с ис-
пользованием разработанного для этих целей программного комплекса на основе сверточной
нейронной сети. На выходе нейросети формировалась диаграмма, показывающей вероятности
соответствия снимка раку, туберкулёзу, либо иному, не содержащему признаки данных заболева-
ний, изображению. Для обучения нейросети было отобрано 108 изображений, количество кото-
рых было доведено до 512 за счет использования увеличения. Работа модели оценивалась по те-
стовой части выборки и по изображениям, взятым из внешних источников.

Результаты: Разработанная нейросетевая модель позволяет не только идентифицировать типо-
вые КТ-изображения или рентгеновские снимки рака и туберкулеза легких. Вероятность отнесе-
ния исследуемого снимка к верифицированному классу (рак, туберкулез или иное не содержащее
признаков данных заболеваний изображение), лежит в пределах 80–95 %, тогда как на веро-
ятность его отнесения к альтернативным классам не превышает 5–20 %. И даже для изображе-



Введение

По данным Всемирной организации

здравоохранения (ВОЗ), легочные заболевания

занимают третье место среди всех причин

смертности во всем мире после сердечно-сосу-

дистых и онкологических заболеваний. Соглас-

но статистике, хроническая обструктивная бо-

лезнь легких является четвертой ведущей при-

чиной смерти в мире и вызывает около 3,5 млн

смертей в год, а хронические респираторные

заболевания в целом являются третьей по рас-

пространенности причиной смертности [1]. И

хотя смертность от обструкции составляет

60 %, считается, что наиболее опасным являет-

ся рак легких. Именно он является самой ча-
стой причиной смерти от онкозаболеваний, и
смертность от него постоянно растет. Рак лег-
ких остается наиболее часто диагностируемым
раком и ведущей причиной смерти от рака в
мире. Исследования эпидемиологии рака пока-
зали, что вклад рака легкого в общую онкологи-
ческую заболеваемость составляет 12,4 %, а в
смертность – 18,7 % [2]. Рак легких остается до-
минирующей формой рака с выраженными
географическими, гендерными и социально-
экономическими различиями. Так, смертность
от рака легких в развитых странах в 5 раз пре-
вышает среднестатистическое мировое значе-
ние [2]. Анамнез данного заболевания, методы
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ний, взятых из сторонних источников, существенно отличающихся от изображений датасетов,
результат распознавания был положительным. Представление результатов работы нейросети в
виде вероятности отнесения изображения к тому или иному классу заболевания существенно по-
вышает степень доверия врача к получаемым результатам и минимизирует вероятность получе-
ния как ложноположительных, так и ложноотрицательных заключений.

Заключение: Проведенные исследования показали, что разработанная нейросетевая модель
верно классифицирует изображения и за счет введения дополнительного класса повышает на-
дёжность и степень доверия к получаемому результату.

Ключевые слова: КТ-изображения, рентгеновские снимки дифференциальная диагностика,
рак, туберкулёз, программный комплекс, трехклассовая идентификация, сверточные 
нейронные сети

Abstract
Purpose: To conduct a preliminary assessment of the potential of a three-class convolutional neural
network (CNN) architecture to reduce the likelihood of false-positive and false-negative diagnoses in the
differential diagnosis of tuberculosis and lung cancer by classifying images atypical for these diseases
into a separate class.

Materials and methods: The study was conducted through a computational experiment using a spe-
cially developed software package based on a convolutional neural network. The neural network output
generated a diagram showing the probabilities of an image matching cancer, tuberculosis, or another
image not containing signs of these diseases. 108 images were selected for training the neural network,
which was increased to 512 through the use of augmentation. Model performance was evaluated using
a test sample and images taken from external sources.

Results: The developed neural network model enables the identification of not only typical CT images
and X-rays of lung cancer and tuberculosis. The probability of classifying a scanned image into a veri-
fied class (cancer, tuberculosis, or another image containing no signs of these diseases) ranges from
80–95 %, while the probability of classifying it into alternative classes does not exceed 5–20 %. Even for
images taken from third-party sources that differed significantly from the dataset images, the recogni-
tion result was positive. Presenting the neural network's results as the probability of classifying an im-
age into a particular disease class significantly increases the physician's confidence in the obtained re-
sults and minimizes the likelihood of both false positives and false negatives.

Conclusion: The studies showed that the developed neural network model correctly classifies images
and, by introducing an additional class, increases the reliability and confidence in the obtained results.

Key words: CT images, X-ray images, differential diagnosis, cancer, tuberculosis, software package,
three-class identification, convolutional neural networks

E-mail: tian.08@mail.ru

https://doi.org/10.52775/1810-200X-2025-108-4-112-129



ЛУЧЕВАЯ ДИАГНОСТИКА

его диагностики и виды, клинико-анатомиче-
ская и гистологическая классификация, а так-
же основы диагностики достаточно подробно
представлены, например, в [3].

Наряду с раком, туберкулез также являет-
ся одним из серьёзных легочных заболеваний.
Так, из отчета ВОЗ за 2024 г. следует, что тубер-
кулез вернул себе позицию ведущей инфек-
ционной причины смерти в мире, представ-
ляющей существенную угрозу общественному
здоровью. В 2023 г. было зарегистрировано
8,2 млн новых случаев туберкулеза и 1,28 млн
смертей от него – почти вдвое больше, чем от
СПИДа и больше, чем от COVID-19, достигнув
максимального числа с начала глобального
мониторинга ВОЗ в 1995 г. [4, 5].

Анализ методов диагностики легочных
заболеваний в целом и диагностики рака лег-
ких и туберкулеза в частности показал, что
симптоматика рака легких и туберкулеза во
многом схожа, что вызывает значительную
проблему, и патогенетическая связь туберкуле-
за и рака легких все еще остается предметом
дискуссии. [6–8]. По этой причине для обоих за-
болеваний используются во многом сходные
методы морфологической диагностики, из ко-
торых наиболее информативными и наиболее
распространенными являются такие рентгено-
логические методы исследования, как рентге-
нография и компьютерная томография (КТ) и
менее распространенными из-за меньшей до-
ступности – многосрезовая компьютерная то-
мография (МСКТ) и позитронно-эмиссионная
томография (ПЭТ), часто совмещаемая с КТ
(ПЭТ/КТ). Результатом перечисленных рентге-
нологических и радионуклидных обследований
являются изображения проекций или попереч-
ных срезов легких, которые передаются для
анализа врачу-рентгенологу или врачу-радио-
логу для составления описания и постановки
диагноза.

Однако, несмотря на высокую информа-
тивность перечисленных методов структурно-
анатомической диагностики, сложность интер-
претации получаемых с их применением изоб-
ражений остаётся значительной, их интерпре-
тация во многом субъективна и может приво-
дить к диагностическим ошибкам [9, 10]. Поэ-
тому для минимизации субъективности приня-
тия решения в помощь врачу-диагносту в по-
следние годы стали предоставляться различ-
ные программные средства для автоматизиро-
ванного распознавания изображений, позво-
ляющие, например, выделять и анализировать

конкретные области интереса путем исследо-
вания статистических свойств границ ново-
образований, их фрактальной размерности,
либо вариации плотности изображения в обла-
сти интереса [11–13].

В последние годы для автоматизации
формирования диагностического заключения
при исследовании органов дыхания, включая
легкие, стали широко применяться различные
виды искусственных нейронных сетей [14, 15] и
даже искусственный интеллект [16].

Для обработки визуальной информации
при этом применяются следующие методы и
подходы:

 Методы глубокого обучения (Deep Learning),
позволяющие нейросети решать поставлен-
ные задачи не по конкретным алгоритмам, а
учиться на опыте, по множеству предъ-
являемых для накопления этого опыта изоб-
ражений-эталонов и оценки получаемого ре-
зультата с целью корректировки параметров
сети [17].

 Метод переноса обучения (Transfer Learning,
TL), суть которого состоит в том, что “зна-
ния” и “опыт”, полученные при решении од-
ной конкретной задачи, берутся за основу
для решения другой задачи, близкой по со-
держанию к изначально решаемой. Это
значительно экономит время и аппаратные
ресурсы на обучение сети при ее примене-
нии для решения новой задачи. Кроме того,
при решении задач анализа медицинских
изображений метод переноса обучения поз-
воляет также преодолеть проблему дефици-
та необходимых для машинного обучения
данных [18].

 Метод диагностики на основе сиамских ней-
ронных сетей [19] – такая сеть представляет
собой две идентичные сверточные нейро-
нные сети (convolutional neural network,
CNN), на вход одной из которых подается ис-
следуемое изображение, на вход второй –
изображение с известным диагнозом, а на
выходе формируется заключение о степени
сходства данных изображений. Следует от-
метить, что такие сети больше подходят для
систем допускового контроля, где требуется
идентифицировать личность входящего,
чем для целей медицинской диагностики,
когда для одного и того же диагноза как эта-
лонные, так и анализируемые изображения
могут сильно варьироваться.

 Использование в нейросетях (преимуще-
ственно рекуррентных) механизма внима-
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ния. Он позволяет нейросети в процессе по-
иска решения идти от общего к частному,
имитируя человеческий когнитивный про-
цесс. Различают канальное и простран-
ственное внимание (Channel Attention и
Spatial Attention). Первый механизм опреде-
ляет наиболее важные признаки изображе-
ния, а второй находит местоположение
ключевой информации [20, 21].

 Применение для диагностики объяснимого
искусственного интеллекта (Explainable
Artificial Intelligence, XAI) [22, 23], представ-
ляющего собой набор процессов и методов,
позволяющих наряду с конечным результа-
том анализа входных данных предоставить
врачу объяснение того, как этот результат
был получен. Это дает врачу возможность
проконтролировать процесс получения ре-
зультата и тем самым получить возможность
исключения критических ошибок при по-
становке диагноза искусственным интел-
лектом. Таким образом, понимание того, как
был получен результат, может не только по-
высить доверие, но и избежать опасных для
жизни ошибок диагностики.

 Метод аугментации хранимых в датасе-
тах данных [24, 25]. Суть метода состоит в
том, что для обучения нейросети исполь-
зуются не только содержащиеся в датасетах
изображения, но и изображения, получен-
ные из исходных путём их ограниченной
трансформации, например, за счет исполь-
зования аффинных преобразований.  Это
позволяет кратно увеличить число исполь-
зуемых при обучении и тестировании сети
изображений, что существенно повышает
качество обучения.

 Методы компенсации дисбаланса классов
[26, 27]. Суть дисбаланса классов состоит в
том, что в используемых для обучения дата-
сетах изображения здоровых и пораженных
легких представлены неравномерно. Нерав-
номерно могут быть представлены изобра-
жения с разными видами заболеваний. В
[27] также отмечается, что на медицинских
изображениях поражения могут занимать
всего несколько пикселов изображения, что
приводит к значительному дисбалансу клас-
сов между поражением и фоном. Одним из
путей ликвидации дисбаланса является
применение аугментации. Другой, предла-
гаемый в [27], подход состоит в применении
двухэтапной структуры глубокого обучения,
когда на первом этапе на изображении выде-

ляются области интересов и минимизи-
руются фоновые участки, а на втором этапе
производится финальное обучение.

Анализ перечисленных выше работ пока-
зал, что все рассмотренные в них подходы ши-
роко используются для решения задачи диаг-
ностики рака легких и туберкулеза.

При этом следует отметить следующее.
1. Большинство работ посвящено выявлению

только одного конкретного заболевания –
рака (например, [28, 29]) или туберкулеза
(например, [30, 31]), и лишь небольшое чис-
ло работ решает задачу их дифференциаль-
ной диагностики (например, [32, 33]), хотя
именно такая диагностика крайне важна в
силу схожести обусловленных туберкулезом
и раком легких изображений пораженных
участков легкого.

2. В подавляющем большинстве случаев для
анализа изображений применяются CNN
глубокого обучения.

3. Программные средства автоматизирован-
ной диагностики, особенно основанные на
применении искусственного интеллекта, до-
статочно требовательны к используемым
вычислительным ресурсам, что ограничива-
ет возможности их применения в неспециа-
лизированных лечебных учреждениях для
проведения скрининг-обследований.

4. В ряде публикаций, например, [34, 35], отме-
чается, что даже прошедшие сертификацию
программные комплексы на основе искус-
ственного интеллекта не всегда устанавли-
вают верный диагноз. Отчасти это связано с
тем, что в них не предусмотрена возмож-
ность выявления ситуации, когда предо-
ставленные для анализа результаты не со-
держат признаков заболеваний, для кото-
рых разрабатывались данные комплексы.

Отсюда вытекает цель данной работы –
исследовать возможность повышения качества
диагностирования туберкулеза и рака легкого
за счет введения в модель нейросети в дополне-
ние к двум базовым классам (рак и туберкулез)
третьего класса для изображений, не содержа-
щих признаки данных заболеваний, либо когда
эти признаки выражены недостаточно явно и
для установления диагноза следует привлечь
квалифицированного специалиста или даже
собрать консилиум.

Положительный результат таких исследо-
ваний позволит повысить достоверность рабо-
ты систем автоматизированной диагностики
за счет уменьшения вероятности отнесения
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снимка к одному из перечисленных заболева-
ний из-за ложноположительных или ложно-
отрицательных диагнозов, а значит и расши-
рить сферу их применения. В перспективе дан-
ный подход может быть развит для выявления
более широкого спектра легочных заболева-
ний, основанных на результатах КТ или других
рентгенологических исследований.

Для достижения данной цели был выбран
тип и архитектура нейросети, разработан про-
граммный комплекс для ее реализации, сфор-
мирована обучающая выборка, с её помощью
проведено обучение сети, и на завершающей
стадии проведены экспериментальные иссле-
дования для оценки эффективности ее приме-
нения. Остановимся на перечисленных этапах
реализации проекта более подробно.

Выбор и описание структуры 
нейросетевой модели

Как следует из рассмотрения работ, по-
священных автоматизации процесса формиро-
вания диагностических заключений, для этих
целей используются в основном многослойные
персептроны (Multilayered Perceptron, MLP), ре-
куррентные нейронные сети (Recurrent Neural
Network, RNN)) и свёрточные нейронные сети
(CNN) (рис. 1).

Каждая из этих архитектур обладает
определёнными преимуществами и ограниче-
ниями применительно к типу решаемой ими
задачи. MLP, как правило, используется для
анализа табличных или одномерных данных,
но слабо подходит для обработки изображений
из-за отсутствия пространственной инвари-
антности. RNN применяется преимущественно
в задачах, связанных с временными рядами и
последовательностями, например, при анализе
ЭКГ. CNN является наиболее эффективным ин-
струментом при работе с изображениями
(рис. 2). Она способна извлекать иерархиче-
ские признаки из изображений, начиная с ба-
зовых (границы, контуры) и заканчивая высо-
коуровневыми абстракциями (формы, тексту-
ры). Поэтому при разработке необходимого для
проведения исследований программного ком-
плекса был выбран именно такой тип нейросе-
ти.

Основу любой архитектуры свёрточной
нейронной сети составляют блоки свёртки
(Conv2D) и подвыборки или пулинга
(MaxPooling2D), за которыми следует слой вы-

прямления (векторизации) и полносвязные
(Dense) слои.

Конкретная архитектура реализованной
в программном комплексе структуры свёрточ-
ной нейросети содержит следующие слои и их
специфические настройки.

Первый сверточный слой Conv2D с 32
фильтрами размером 33 извлекает базовые
признаки (границы, текстуры, простые формы)
из изображения. Он проходит свёрткой по все-
му изображению, создавая карты признаков,
где каждый фильтр формирует своё представ-
ление об определённой особенности на изобра-
жении. Активация ReLU применяется для
устранения отрицательных значений, вводя в
модель необходимую нелинейность.

За первым слоем Conv2D следует слой
MaxPooling2D, который уменьшает размер-
ность карт признаков, оставляя только наибо-
лее значимые элементы из каждого окна 22,
что снижает вычислительные затраты и делает
извлечённые признаки инвариантными к
сдвигу.

Далее используется второй Conv2D слой с
64 фильтрами, за которым также следует пу-
линг, что углубляет уровень извлечённых при-
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Рис. 1. Архитектуры нейронных сетей MLP и RNN
применяемых в автоматизированных системах
медицинской диагностики, где FC (fully connected) –
полносвязные слои

Рис. 2. Структура классической свёрточной нейро-
сети



знаков – теперь сеть может распознавать более
сложные структуры и формы. Затем данные
проходят через слой Flatten, переводящий их в
одномерный вектор, который подаётся в полно-
связный слой Dense с 64 нейронами. Перед
этим используется Dropout слой с параметром
drop_rate=0.3, отключающий случайные ней-
роны на каждой итерации, что предотвращает
переобучение и заставляет сеть учиться более
устойчивым представлениям.

Заключительный полносвязный Dense-
слой соединяет все признаки, собранные с пре-
дыдущих уровней, и отправляет их на softmax-
слой, который возвращает вероятностное рас-
пределение по классам. Таким образом, сеть
принимает решение на основе совокупной ин-
формации, извлечённой со всего изображения 

Функция потерь categorical_crossentropy
сравнивает предсказанные вероятности с ис-
тинными метками классов и возвращает
значение ошибки – чем ближе предсказание к
истинной метке, тем меньше значение функ-
ции. Во время обратного распространения
ошибки (backpropagation) вычисляется гради-
ент этой ошибки по отношению к каждому весу
сети, и веса обновляются с помощью оптимиза-
тора Adam, который адаптивно регулирует шаг
обучения на основе первого и второго моментов
градиента.

Гиперпараметры модели были взяты
типовые: размер ядра свёртки – 33, пулинг –
22, значение коэффициента Dropout, равное
0,3, количество эпох обучения – от 10. Для
контроля процесса обучения использовались
обратные вызовы EarlyStopping и Model -
Checkpoint, автоматически сохраняющие наи-
лучшую по валидационной точности модель.
Предусмотрено использование регуляризации
через Dropout, что помогает бороться с пере-
обучением.

Используемая на выходе нейросети
softmax-активация необходима для реализа-
ции многоклассовой идентификации. Softmax
обеспечивает, чтобы каждый соответствующий
конкретному классу выход представлял веро-
ятность принадлежности результата диагно-
стики к конкретному классу, и сумма вероятно-
стей всех выходов равнялась единице. В дан-
ной модели было реализовано три выхода для
идентификации трех классов-диагнозов: “Ту-
беркулез”, “Рак легкого” и “Что-то иное”. Нали-
чие последнего класса, предполагающего, что
на вход сети подано любое иное изображение,
не содержащее признаков перечисленных за-

болеваний, принципиально отличает предла-

гаемое решение от других аналогичных реше-

ний, позволяя пользователю не предположить,

а наглядно увидеть, в какой степени исследуе-

мый снимок не относится ни к туберкулезу, ни к

раку легкого.

Описание программного комплекса

Построение интеллектуальной системы

автоматизированной диагностики лёгочных

заболеваний требует поэтапной реализации

программного решения, охватывающего весь

жизненный цикл обработки медицинских

изображений – от их загрузки и предобработки

до обучения с последующей классификацией и

представлением диагностических выводов при

применении модели во врачебной практике.

В качестве основной среды разработки

использовался язык программирования

Python, благодаря его широким возможностям

в сфере анализа данных и глубокого обучения.

При разработке программного комплекса

исполь зовались следующие инструменты

(фреймворки и библиотеки) с открытым

исходным кодом.

 TensorFlow / Keras – написанные на Python
фреймворки глубокого обучения, необходи-

мые для построения, обучения и сохранения

нейросетевой модели. TensorFlow предлага-

ет комплексные инструменты для работы с

нейросетями, а Keras обеспечивает масшта-

бируемость и надёжное развёртывание при -

ло же ния.

 NumPy – библиотека для Python, использо-
ванная для работы с большими многомер-

ными числовыми массивами и матрицами в

процессе обработки преобразуемых в них

изображений.

 OpenCV и PIL – библиотеки, использованные
для обработки и преобразования изо бра же -

ний.

 PyDICOM – Python-библиотека, необходимая
для чтения файлов медицинского формата

DICOM и извлечения из них графической и

текстовой информации.

 Matplotlib и Seaborn – библиотеки для
Python, использованные для построения

графической информации, в частности для

построения графиков обучения и представ-

ления результатов анализа DICOM-изо бра -

же ний.
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 Scikit-learn – построенная на основе NumPy
и SciPy библиотека Python, предназначен-
ная для машинного обучения и анализа дан-
ных. В процессе исследований использова-
лась для расчёта точности, полноты, F1-ме-
ры, а также построения матриц ошибок.

Программный комплекс построен на мо-
дульной архитектуре, позволяющей разделить
весь процесс на независимые блоки: предвари-
тельная обработка данных, построение и об-
учение модели, сохранение результатов, визуа-
лизация. Файловая структура проекта
отражена на рис. 3. Модульный подход обес-
печивает гибкость и масштабируемость реше-
ния, а также упрощает отладку и возможную
доработку программного продукта в будущем.
В программный комплекс входит также модуль
применения модели для решения практиче-
ских задач медицинской диагностики по КТ и
рентгеновским снимкам. Его интерфейс позво-
ляет пользователю загрузить снимок (в форма-
те DICOM, PNG или JPEG), после чего изобра-
жение автоматически нормализуется, масшта-
бируется, подается на вход модели и на её вы-
ходе рассчитываются вероятности принадлеж-
ности изображения к каждому из вышепере-
численных диагностических классов. Результа-
ты расчета отображаются в понятной визуаль-
ной форме, отражающей степени уверенности
по каждому диагнозу.

Таким образом, разработанный про-
граммный комплекс представляет собой завер-
шённый инструмент, способный не только ре-
шать задачи дифференциальной диагностики,
но и стать основой для последующего его рас-
ширения для решения задач сегментации

изображений для выделения областей интере-
са, поиска очагов патологии и построения объ-
яснимых моделей. Простота предложенной ар-
хитектуры CNN позволила использовать для
проведения предварительный исследований
обычный персональный компьютер на базе
CPU Intel ® Core (ТМ) i7-10750H @2.6GHz с объе-
мом оперативной памяти 16 ГБ.

Подготовка исходных данных для
построения и тестирования 
нейросетевой модели

Основными этапами отбора и подготовки
данных для обучения нейросети и проведения
последующих исследований являются выбор
подходящего датасета, извлечение из него не-
обходимых данных, преобразование этих дан-
ных в формат изображений, нормализация по-
лученных изображений и их преобразование в
единообразный формат, репродуцирование по-
лученного множества изображений до количе-
ства, минимально достаточного для обучения
сети, и разбиение этого множества на подмно-
жества, необходимые для проведения обучения
и тестирования нейросети. Рассмотрим эти
этапы более подробно.

Получение набора исходных изображений

Для получения исходных изображений,
необходимых для обучения нейронной сети,
был выбран один из известных ресурсов с от-
крытым доступом, Cancer Imaging Archive
(TCIA), представляющий собой базу данных с
открытым доступом, содержащую медицин-
ские изображения с исследованиями рака лёг-
кого. Данные в базе организованы в обширные
коллекции медицинских изображений, кото-
рые сгруппированы по типу рака и его анато-
мической локализации [36, 37]. Большая часть
коллекций состоит из изображений КТ, МРТ и
ядерной медицины (например, ПЭТ), которые
хранятся в формате DICOM, но для повышения
исследовательской ценности также предостав-
ляются или приводятся ссылки на многие дру-
гие типы вспомогательных данных. Все данные
обезличены в соответствии с Законом о перено-
симости и подотчётности медицинского стра-
хования и политикой обмена данными Нацио-
нальных институтов здравоохранения.

Для обучения нейросети диагностике ту-
беркулеза был использованы датасеты с из-
вестного ресурса Kaggle, содержащего в откры-
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Рис. 3. Файловая структура проекта



том доступе 700 рентгенограмм различных
форм туберкулеза и пациентов с нормальными
показателями, не имеющих признаков заболе-
ваний (набор Tuberculosis Chest X-ray Dataset),
а также 165 КТ-срезов с бинарными масками
(CT Tuberculosis Dataset) [38].

Кроме того, для обучения сети по классу
туберкулеза и прочих заболеваний был задей-
ствован датасет LIDC-IDRI (The Lung Image
Database Consortium – Image Database Resource
Initiative), содержащий 1018 случаев КТ-иссле-
дований [39, 40].

Поскольку файлы изображения в датасе-
тах хранятся в специальном медицинском фор-
мате DICOM (Digital Imaging and
Communications in Medicine, расширение фай-
лов “dcm”), предназначенном для хранения ме-
дицинских изображений и сопровождаемых их
метаданных, для извлечения из них изображе-
ний использовались соответствующие функ-
ции библиотеки PyDICOM, представляющей со-
бой мощный инструментарий для работы с ме-
дицинскими изображениями в формате
DICOM. Библиотека предоставляет удобные
возможности не только для извлечения данных
из DICOM-файлов, но и для проведения разно-
образных манипуляций с изображениями, ана-
лиза метаданных и их конвертации в различ-
ные форматы.

Всего из упомянутых датасетов было вы-
брано 108 изображений с диагнозами “туберку-
лез” (54 снимка), “рак легкого” (54 снимка), а
также дополнительно 54 снимка легких из по-
следнего датасета, формирующих третий
класс. Выбор одинакового количества снимков
для каждого класса позволил исключить ранее
упомянутую проблему дисбаланса выборок.
Здесь стоит отметить, что столь малый объем
выборок объясняется тем, что изображения из-
влекались из архивов вручную, что было доста-
точно трудоемко. Кроме того, в работе стави-
лась цель не проведения исследований по оцен-
ке статистических свойств получаемых оценок,
а проведения исследований только для каче-
ственной оценки достоинств и недостатков
применения нового подхода при проведении
дифференциальной диагностики.

Предварительная обработка исходных
изображений

Предварительная обработка DICOM-
изображений играет ключевую роль как на ста-
дии подготовки данных для обучения нейро-
нных сетей, так и при их использовании для ре-

шения практических задач, и содержит не-
сколько этапов.

На первом этапе изображения в формате
DICOM с применением библиотеки PyDICOM
конвертировались в одноканальные (grayscale)
изображения в формате PNG. На втором этапе
они масштабировались до стан дар ти зи ро ван -
но го разрешения 512512 пикселов для совме-
стимости с большинством современных нейро-
сетевых архитектур. На третьем этапе произво-
дилась коррекция контрастности (VOI LUT) и
выполнялась нормализация их яркости, что
особенно важно для медицинских изображе-
ний, варьирующихся по уровню экспозиции.

Особое значение имеет преобразование
на следующем этапе обработки полученных
черно-белых изображений в восьмибитный
формат, обеспечивающий диапазон яркости
пиксела в виде 256 градаций серого. Это позво-
лило снизить требования к вычислительным
ресурсам, а также сократить время обучения
нейросети. Для повышения скорости обучения
и снижения требований к вычислительным ре-
сурсам рассматривалась также возможность
применения бинаризации изображений, одна-
ко исследования показали, что бинаризация
снижает точность идентификации. Пример ис-
ходного, нормализованного и бинаризирован-
ного изображения показаны на рис. 4.

Аугментация исходного набора данных

Точность предсказания нейросетевой мо-
дели во многом определяется объёмом и разно-
образием обучающей выборки – чем она боль-
ше, тем выше точность и тем больше обобщаю-
щая способность и устойчивость нейросетевой
модели к вариативности данных, а также мень-
ше риск переобучения из-за ограниченности
объема обучающей выборки. Поэтому следую-
щим этапом со взятыми из датасетов изобра-
жениями стала их аугментация, позволяющая
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Рис. 4. Пример изображения до и после нормализа-
ции и после бинаризации
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увеличить объем обучающей выборки. Она
позволяет создавать дополнительные изобра-
жения путем внесения различных изменений в
имеющиеся в наличии оригиналы и широко ис-
пользуется для решения проблемы нехватки
данных в обучающих наборах. В данных иссле-
дованиях использовалось два подхода с аугмен-
тацией исходных изображений. 

Первый основан на применении к изобра-
жению простейших операций, к которым
относятся: 

 горизонтальное и вертикальное отражение,
позволяющее создать зеркальные отраже-
ния изображений, увеличивая разнообразие
данных;

 случайные повороты и сдвиги, позволяю-
щие модели обучаться на различных ракур-
сах объектов и сцен, улучшая ее устой чи -
вость к вариациям; 

 изменение яркости и контраста, помогаю-
щее модели адаптироваться к изменениям
освещения;

 масштабирование и обрезка, создающие до-
полнительные варианты изображений без
внесения в них геометрических искажений
формы;

 добавление шума, улучшающее устой чи -
вость модели к артефактам;

 эластичные искажения, помогающие моде-
ли учитывать разнообразие форм и структур
объектов.

Реализация данных операций была вы-
полнена на базе библиотеки torch vision.trans -
forms, а их результат сохранялся в директории
augmented_dataset, разбитой на подпапки по
классам (“Рак” и “Туберкулез”) (рис. 3). Примеры
применения к изображению части из перечис-
ленных операций, относящихся к аффинным
преобразованиям, представлены на рис. 5.

Второй подход основан на создании мно-
жества вариаций одного и того же DICOM-изоб-
ражения путем использования технологии
Stable Diffusion и вариационных автоэнкодеров
(VAE). Для реализации этого подхода использо-
вался ImageDataGenerator из Keras, позволяю-
щий эффективно организовать подачу данных
в модель за счет включения в них параметра
validation_split для встроенного разделения в
обучающей выборке различных типов изобра-
жений. 

В результате применения аугментации
общее количество изображений по двум основ-
ным классам возросло до 512. Каждый исход-
ный снимок был обработан и дополнен не-

сколькими вариациями, отличающимися по
наклону, яркости и контрастности, что позво-
лило искусственно расширить и разнообразить
датасет. Использование аугментации вместо
расширения числа исходных изображений
объясняется тем, что аугментация выполня-
лась автоматически программными средства-
ми, тогда как отбор снимков делался вручную.
Кроме того, её применение оправдано и для
проведения последующих, более масштабных
исследований, так как позволяет в разы увели-
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Рис. 5. Примеры применения афинных преобразова-
ний к исходному изображению (вверху) и сообщение
о завершении процесса аугментации (внизу)



чить объем обучающей выборки и тем самым
повысить качество обучения нейросетевой мо-
дели.

Организация процесса обучения
нейросети

После построения и формирования ис-
ходных данных следует собственно этап обуче-
ния. Для этого весь набор данных был разбит
на тренировочную, валидационную и тестовую
части, которые в работе были выбраны в соот-
ношении 80:10:10. Для такого разбиения на
этапе подготовки к обучению, как уже отмеча-
лось, использовался функционал Image Data -
Generator с параметром va li da tion_split, позво-
ляющий автоматически делить данные на об-
учающую и валидационную выборки.

Все предварительно обработанные (мас-
штабированные, нормализованные и преобра-
зованные в восьмибитный формат greyscale)
изображения подавались на вход модели в виде
тензоров с одним каналом, что позволяло со-
хранить их визуальные особенности. Метка
класса для каждого изображения формирова-
лась на основе названия папки и кодировалась
в формате one-hot: [1, 0] – для изображений с
диагнозом “рак”, [0, 1] – для “туберкулёза” и [0,
0] – для прочих изображений. Далее снимок
проходил через архитектуру свёрточной нейро-
сети, реализованной с использованием модели
Sequential.

Обучение происходило поэтапно, батча-
ми, по 32 изображения в батче. Это позволяло

обрабатывать данные по частям, не загружая
всю выборку в память сразу. Одна эпоха пред-
ставляет собой полный проход по обучающему
датасету, а итерация – это количество шагов
внутри одной эпохи, равное числу батчей. На
каждой итерации сеть делала прогноз, сравни-
вала его с истинной меткой (target), рассчиты-
вала ошибку (loss) и обновляла внутренние па-
раметры с использованием метода обратного
распространения ошибки и оптимизатора
Adam с начальной скоростью обучения 0,001.
За счёт такой обратной связи сеть в процессе
обучения постепенно минимизировала функ-
цию потерь и улучшала свои предсказания, де-
лая акцент на признаках, оказавшихся значи-
мыми для постановки диагноза.

Для отслеживания динамики и качества
обучения применялись такие метрики, как ac-
curacy, precision, recall, F1-score. Для исключе-
ния переобучения использовался механизм
early stopping и строились графики изменения
валидационной точности и функции потерь,
позволяющие визуально оценить, как быстро и
стабильно обучается модель (рис. 6). Благодаря
этим визуализациям было установлено, что
уже на 5–6 эпохе точность стабилизируется, а
потери на валидации перестают снижаться,
что свидетельствовало о достижении оптиму-
ма.

Результатом процесса обучения явилась
модель CNN, способная различать патологиче-
ские образования на изображениях лёгких с
высокой степенью достоверности.

Для обеспечения дальнейшего использо-
вания модели без необходимости повторного
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Рис. 6. Зависимость точности и потери в зависимости от эпохи обучения
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обучения или для её применения по технологии
Transfer Leaning для диагностики других близ-
ких по внешним проявлениям заболеваний она
был сохранена в формате .h5 в соответствую-
щем каталоге файловой структуры проекта
(рис. 3).

Пример работы нейросетевой 
модели и полученные результаты

Для количественной и качественной
оценки работы модели на тестовой выборке и
сравнительного анализа с экспертными за-
ключениями использовался программный мо-
дуль с пользовательским интерфейсом (на базе
Tkinter). Он позволяет загружать рентгенов-
ские и КТ-снимки, выполнять их классифика-
цию и получать результат в виде диаграммы,
показывающей вероятности принадлежности
снимка к одному из классов диагностических
классов (рак, туберкулёз, иное изображение),
что делает систему удобной и интерпретируе-
мой в условиях клинической практики

Далее приводится демонстрация работы
разработанной нейросетевой модели на приме-
ре нескольких снимков легких, не входивших в
обучающую выборку, с целью оценки поведе-
ния модели на новых данных, а также оценки
интерпретируемости и достоверности получен-
ных результатов классификации. Все снимки
до подачи на вход сети подвергались ранее опи-
санной предварительной обработке.

Так, на рис. 7 показан КТ срез легкого па-
циента с диагнозом “Рак легкого”. Соответ-
ствующий данному изображению результат ра-
боты нейросети в виде распределения веро-
ятностей (или степени уверенности в диагнозе)
заболеваний по их классам представлено на
рис. 8.

Как видно из представленной на этом ри-
сунке диаграммы, модель продемонстрировала
высокую степень уверенности при классифика-
ции данного изображения, с явным преоблада-
нием вероятности класса “рак лёгких”. При
этом вероятность отнесения к другим классам
была минимальной, что свидетельствует об од-
нозначности предсказания. На самом снимке,
который использовался для диагностики, хоро-
шо видна округлая область – характерное обра-
зование, соответствующее опухоли в лёгком.
Именно наличие этой заметной круглой зоны
позволило нейросети правильно распознать и
классифицировать изображение. Таким обра-

зом, модель эффективно выделяет ключевые

признаки, присутствующие на изображении, и

на их основе строит своё заключение, что под-

тверждает высокую точность и надёжность её

работы в диагностике данного заболевания.

Высокая вероятность принадлежности

снимка к классу “Рак” подтверждает способ-

ность модели точно выделять характерные ви-

зуальные признаки злокачественного образо-

вания. Тем не менее, оставшиеся вероятности

(на уровне 10,2 % и 5,0 %) говорят о том, что

модель полностью не исключает альтернатив-

ные диагнозы, что особенно важно в условиях

реальной медицинской практики.

Аналогичные результаты были получены

и для десяти других подобных снимков. При

этом усреднённые вероятностные показатели
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Рис. 7. Нормализованное изображение среза легко-
го с признаками онкологического заболевания

Рис. 8. Распределение вероятностей по диагности-
ческим классам для рака легких



составили 82,3 % для рака легкого, 12,4 % для
туберкулеза и 5,3 % – для иных снимков.

Другой пример демонстрирует ситуацию,
когда модель уверенно отнесла изображение к
классу “туберкулез”. Визуальный анализ сним -
ка (рис. 9) показывает наличие плотной округ-
лой тени с чёткими контурами и однородной
внутренней структурой – именно такие харак-
теристики свойственны туберкуломам, возни-
кающим при локализованных формах туберку-
лёза лёгких. При обработке этого изображения
система определила наиболее вероятным
именно данный класс (рис. 10).

Такая картина вероятностного распреде-
ления свидетельствует о высокой чувствитель-
ности модели к особенностям, характерным
для туберкулёзного поражения. При этом, не-
смотря на доминирующий класс, сохраняется
небольшая вероятность принадлежности
снимка альтернативным вариантам, что под-
чёркивает осторожность алгоритма при приня-
тии решений и снижает риск ложноположи-
тельных предсказаний.  В этом отмечается не-
которое отдаленное сходство предложенного
решения с объяснимыми системами диагно-
стики.

Близкие результаты были получены и для
других подобных снимков. При их общем коли-
честве, равном девяти, усреднённые веро-
ятностные показатели по туберкулезу со ста ви -
ли 12,3 % для рака легкого, 84,5 % для
туберкулеза и 3,2 % – для иных снимков.

В рамках устойчивости и обобщающей
способности нейросетевой модели был прове-
дён эксперимент с использованием не КТ, а

рентгеновского снимка грудной клетки, полу-
ченного из открытых интернет-источников, на
котором визуализируются признаки туберку-
лёзного поражения лёгких и отчётливо просле-
живается замкнутая форма очага, типичная
для инкапсулированных воспалительных про -
цес сов (рис. 11). Это позволило модели опи-
раться на перечисленные диагностически
значимые визуальные признаки и принять ре-
шение, близкое к клинической интерпретации
(рис. 12).

Несмотря на то, что изображение не вхо-
дило в обучающую выборку и имело более низ-
кое разрешение, чем изображения, использо-
ванные при обучении, модель продемонстри-
ровала способность к корректной интерпрета-
ции. Это объясняется тем, что свёрточные ней-
ронные сети опираются преимущественно на
пространственные и морфологические призна-
ки изображений – такие как контуры, плот-
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Рис. 9. Пример изображения туберкулеза после его
предобработки

Рис. 10. Распределение вероятностей по диагно-
стическим классам для туберкулеза

Рис. 11. Взятая из открытых источников рентге-
нограмма туберкулеза легких
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ность, текстура и границы объектов – а не на
абсолютные значения пикселов, что делает их
устойчивыми к вариациям масштаба и каче-
ства изображений.

Обученная модель была натренирована
на классе изображений легкого для двух пато-
логических классах – рака лёгкого и туберкулё-
за и одного класса, не содержащих характер-
ных для данных заболеваний патологических
изменений, либо вообще не содержащих пато-
логий. Рак лёгкого и туберкулёза могут визуа-
лизироваться схожим образом и оба заболева-
ния, как правило, сопровождаются появлением
одиночных или множественных очагов округ-
лой формы (так называемых шаровидных обра-
зований) в лёгочной ткани. Однако патоморфо-
логические различия отражаются в специфике
рентгенологических проявлений. Так, при ту-
беркулёзе лёгких, особенно в фазе диссемина-
ции, характерно множественное очаговое по-
ражение с преимущественно чёткими граница-
ми и гомогенной внутренней структурой, тогда
как при злокачественных новообразованиях
чаще визуализируются одиночные узлы с не-
ровными или нечеткими контурами, возмож-
ными признаками инфильтрации и перифо-
кального воспаления.

Анализ приведенного на рис. 11 изобра-
жения проводился на сегментированной обла-
сти левого лёгочного поля. Нейросетевая мо-
дель классифицировала данное изображение с
высокой вероятностью как соответствующее
туберкулёзу лёгких. Основным критерием, ис-
пользованным моделью, стало наличие множе-
ственных узелков по всей паренхиме лёгкого –
типичный паттерн для гематогенно-диссеми-
нированной формы заболевания. Согласно
клинико-рентгенологическим данным, такой

характер распространения очагов (мелкие
фокусные тени диаметром 1–3 мм с равномер-
ной диссеминацией) наблюдается у более чем
85 % пациентов с генерализованным туберку-
лёзом.

Была также исследована возможность
применения разработанной модели к сегменту
рентгеновского изображения, содержащему
шарообразное новообразование в лёгких, с
клинически подтверждённым диагнозом – не-
мелкоклеточный рак лёгкого (рис. 13). Данное
изображение было взято из открытых меди-
цинских источников и не входило в обучающую
выборку модели, что позволяет рассматривать
его как внешний (вневыборочный) тест.

Для проведения данных исследований ар-
хитектура модели была модифицирована: ко-
личество выходных классов было ограничено
только раком и туберкулёзом, чтобы сфокуси-
ровать классификацию на наиболее релевант-
ных для данного эксперимента патологиях и
устранить влияние других классов.

Полученное в модели вероятностное рас-
пределение по эти двум классам отражено на
рис. 14. Модель неверно классифицировала
изображение как “туберкулёз” с вероятностью
58 %, в то время как вероятность отнесения к
классу “рак” составила 42 %. Такой результат
можно объяснить рядом факторов. Во-первых,
визуальные признаки, представленные на
изображении (в частности, малоконтрастные
сероватые контуры вокруг образования), ха-
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Рис. 12. Распределение по диагностическим катего-
риям для изображения, приведенного на рис. 11

Рис.13. Сегмент рентгенограммы легких с изобра-
жением шарообразной опухоли



рактерны как для инфильтративных форм ту-
беркулёза, так и для ранних стадий злокаче-
ственных новообразований. В литературе от-
мечается, что на ранних стадиях рак лёгких ча-
сто имеет форму одиночного узла с умеренно
выраженными краями, что затрудняет визу-
альную дифференциацию. Во-вторых, ошибка
во многом была обусловлена малым объёмом и
разнообразием обучающей выборки. Ограни-
ченный набор изображений снижает способ-
ность модели корректно интерпретировать ра-
нее не встречавшиеся снимки, особенно если
они сильно отличаются от изображений, ис-
пользованных при обучении.

Дополнительно стоит отметить отсут-
ствие модуля локализации очага патологии в
текущей архитектуре. Модель анализирует всё
изображение целиком, что может вносить в
классификацию нерелевантные признаки, на-
ходящиеся вне зоны патологического образова-
ния. Это снижает точность принятия решения,
особенно при наличии артефактов или сопут-
ствующих изменений в лёгочной ткани.

Тем не менее, тот факт, что модель
присвоила изображению 42 % вероятности
принадлежности к классу “рак”, свидетельству-
ет о том, что она зафиксировала характерные
признаки злокачественного процесса, но не
смогла окончательно дифференцировать их от
признаков туберкулёза. Такой уровень неопре-
делённости (близкий к 50/50) может служить
индикатором необходимости привлечения экс-

пертного заключения, а также свидетельствует
о потенциале модели к обучению на более ши-
роком спектре данных.

Таким образом, проведённый экспери-
мент демонстрирует как текущие ограничения
модели, так и направления для её дальнейшего
совершенствования – в частности, расширение
обучающей выборки, внедрение механизмов
сегментации патологических очагов и исполь-
зование методов интерпретируемого машинно-
го обучения.

Ограничения модели и перспективы
её развития

Несмотря на то, что в большинстве тестов
модель однозначно принимала правильное ре-
шение, тем не менее, как видно из рис. 14, воз-
можны случаи принятия моделью ложных ди-
агнозов (ложноположительного для туберкуле-
за и ложноотрицательного для рака легкого).
Поэтому было бы логично при ситуациях, когда
перепад вероятностей (или долей уверенности)
между классами оказывается ниже некоторого
заданного порога, модель должна выдавать
предупреждение о высокой вероятности оши-
бочности поставленного диагноза. Отсюда вы-
текает необходимость проведения дальнейших
исследований, направленных на установление
такого порога, что, в свою очередь, требует су-
щественного увеличения объема тестирова-
ния, причем лучше за счет привлечения дата-
сетов, не задействованных в обучении модели.
Стоит также увеличить и объем исходной об-
учающей выборки за счет автоматизации про-
цесса отбора снимков из имеющихся датасе-
тов. И только после таких исследований и ра-
бот, позволяющих составить матрицу несоот-
ветствия по всем трем классам, построить соот-
ветствующие этим классам ROC-кривые и най-
ти другие используемые в многоклассовой
классификации и машинном обучении метри-
ки, можно будет провести объективное сравне-
ние с имеющимися аналогами. И лишь затем
можно будет поднимать вопрос о возможности
практического применения разработанной мо-
дели.

В дальнейшем для развития модели целе-
сообразно будет рассмотреть вопрос о добавле-
нии в нее новых диагностических классов, ис-
пользовании для диагностики других видов ме-
дицинских исследований (например, ПЭТ/КТ
или МРТ, МСКТ). Поскольку рентгеновские
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Рис.14. Распределение по диагностическим катего-
риям рак и туберкулез
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снимки существенно отличаются от снимков
при других видов обследований, возможно,
есть смысл выделить диагностику по рентге-
новским снимкам в отдельную нейросетевую
модель. Кроме того, в качестве альтернативных
изображений лучше подбирать изображения,
на которых диагностические признаки подоб-
ны признакам туберкулеза и рака легких, что
потребует привлечения к работе медиков – спе-
циалистов в области диагностики легочных за-
болеваний.

Поскольку главной задачей данной рабо-
ты являлась демонстрация преимущества ис-
пользования для дифференциальной диагно-
стике трехклассовой модели, была использова-
на простейшая структура сети и восьмибитная
градация серого на изображениях, чтобы мож-
но было выполнять исследования при мини-
мальных требованиях к вычислительным ре-
сурсам. Поэтому в перспективе стоит рассмот-
реть необходимость применения более слож-
ной структуры нейросети и увеличения числа
градаций серого для повышения точности про-
гнозирования. Стоит также добавить в модель
модуль сегментации изображений с целью вы-
деления в них значимых для диагностики обла-
стей интересов и модуля объяснимости полу-
чаемых результатов. Всё это сделает предло-
женный подход перспективным направлением
для внедрения в клиническую практику и даль-
нейшего научного развития.

Заключение

В результате проведенных исследований
была разработана и реализована нейросетевая
модель, предназначенная для диагностики та-
ких лёгочных заболеваний, как рак и туберку-
лез, что было обусловлено их высокой распро-
странённостью и сложностью дифференциаль-
ной диагностики по визуальным признакам.
Применение методов искусственного интеллек-
та, в частности свёрточных нейронных сетей с
идентификацией изображений по трем клас-
сам позволило повысить объективность диаг-
ностики и уменьшить влияние человеческого
фактора на принятие решения.

Были проанализированы современные
подходы к визуальной диагностике, разрабо-
тан и обучен прототип нейросетевой модели,
выполнена аугментация обучающих данных,
обеспечивающая устойчивость модели к вариа-
тивности медицинских изображений. Для про-

ведения исследований был создан программ-

ный комплекс, способный не только классифи-

цировать изображения по диагностическим

классам, но и визуализировать их вероятност-

ное распределение. Это является важным до-

стоинством разработанного комплекса, позво-

ляя  наглядно видеть, насколько уверенно был

поставлен данный диагноз и какое из возмож-

ных альтернативных решений преобладает.

Кроме того, введение класса для прочих пато-

логий уменьшает “искушение” нейросети отне-

сти изображение к одному из двух основных

классов, то есть снижает вероятность получе-

ния ложных диагностических заключений. Это

делает систему более надежной, прозрачной и

понятной для конечного пользователя – врача-

рентгенолога.

Экспериментальное тестирование пока-

зало высокую точность работы модели. На при-

мерах изображений, не входивших в обучаю-

щую выборку, она продемонстрировала уверен-

ное определение патологий с распределением

вероятностей, позволяющим делать верные

выводы. Особенно важно, что модель сохра-

няет чувствительность к альтернативным ди-

агнозам, что повышает её надёжность в усло-

виях клинической неопределённости.

Однако, на данном этапе, несмотря на в

целом положительный результат исследова-

ний, рекомендовать разработанный комплекс в

клиническую практику преждевременно в силу

крайне ограниченного объема как обучающей,

так и тестовой выборок и отсутствия оценки

статистических свойств модели. Поэтому толь-

ко после проведения дополнительных исследо-

ваний и вышерассмотренных доработок можно

рассматривать применение предложенного ре-

шения в качестве вспомогательного инстру-

мента при проведении первичной диагности-

ки.
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