РАСЧЕТНАЯ МОДЕЛЬ ДЛЯ ОПРЕДЕЛЕНИЯ ДОЗЫ ПРИ ДОЗИМЕТРИИ ПРОТОННЫХ ПУЧКОВ

B.B. $Cukcuh^1$, O.B. $Cymaheeb^2$

¹ Физический институт им. П.Н. Лебедева РАН, Москва ² Институт физики высоких энергий, Протвино

Усовершенствована ранее предложенная математическая модель для вычислителя дозы для детектора телевизионного типа. Определены параметры аналитической формулы, справедливой для энергий протонов от 30 до 250 МэВ, в основе которой применена комбинация функций параболического цилиндра, согласуемая с численными методами и новыми экспериментальными данными.

Ключевые слова: протонная терапия, область энерговыделения, водный фантом, адаптивная телевизионная камера, пик Брегга, глубинное дозное распределение, аналитическая аппроксимация, функция параболического цилиндра

Введение

Для нового типа детектора ДТеТ - детектора телевизионного типа [1-4] разработана математическая модель определения дозы с аналитическим представлением кривой Брегга [5], которая основывается на экспериментально полученных результатах при энергиях протонного пучка от 60 до 150 МэВ. Совершенствование протонного варианта детектора ДТеТ позволило провести эксперименты в более широком диапазоне терапевтических энергий - от 30 до 250 МэВ, что обеспечило перекрытие терапевтического диапазона энергий ускорителя "Прометеус".

В данной работе используется аналитическая формула из работы [5], с помощью которой описываются дополнительные данные эксперимента [4], полученные в декабрьском сеансе 2018 г. на ускорителе "Прометеус" в терапевтическом диапазоне энергий от 30 до 250 МэВ. В разработанном нами вычислителе промышленного образца предполагается использовать полученные аналитические формулы, при этом в алгоритме вычислений должны учитываться показатели интенсивности пучка, получаемые от ускорителя через интерфейс связи с ним, и измеренные детектором ДТеТ значения *z* – координаты глубины максимума пика Брэгга, что позволит определять дозу DOZA(*z*) на глубине максимума пика Брэгга.

При отработке математической модели использован пакет программ FLUKA [6, 7], с помощью которого для энергий терапевтического диапазона проведены вычисления величин DOZA(*z*).

На рис. 1 показан рабочий кадр детектора с результатом попиксельного измерения длины "области свечения" при энергии пучка протонов 100 МэВ, которая определяет величину *z* (точку остановки протона в водном фанто-

Рис. 1. Рабочий кадр процесса измерения зафиксированной траектории пучка протонов с энергией 100 МэВ в водном фантоме

ме, зафиксированную детектором телевизионного типа по вспышке в конце пути протона).

Математическая модель с аналитической аппроксимацией кривой Брегга имеет простой и удобный вид, позволяющий проводить быстрые вычисления в рамках программного обеспечения детектора ДТеТ в опline режиме работы. В усовершенствованной математической модели в качестве основных механизмов сохранены комбинация функций параболического цилиндра и модель в замкнутом виде, описывающие кривые Брегга. Новые полученные результаты согласуются с численными методами – программой FLUKA [6, 7], а также с другими экспериментальными данными [8, 9].

Получение аналитической зависимости дозы от глубины энерговыделения в водном фантоме

Выведенная ранее в [5] аналитическая формула позволяет по величине *z*, измеренной детектором телевизионного типа, вычислить поглощенную дозу (в опорной точке *z* в светящемся пике Брегга):

DOZA(z) =
$$K_1 e^{-39.0625(R_0 - z)^2} \times [K_2 D_{-1.565} (-12, 5(R_0 - z)) + (1) + 140,75 D_{-0.565} (-12, 5(R_0 - z))],$$

где K_1 и K_2 – константы; R_0 – параметр при заданной начальной энергии E_0 налетающего протона [10]; z – точка (текущая глубина) в водном фантоме, измеренная детектором; $D_{-1,565}$ и $D_{-0.565}$ – функции параболического цилиндра.

Основным механизмом аппроксимации здесь является функция параболического ци-

Таблица 1

Константы и параметры аналитического выражения (1)

Энергия, МэВ	Параметр		
	κ_1	K2	<i>R</i> ₀ , см
30	0,03086760	2,897270	0,90400
40	0,03535980	1,791470	1,51560
50	0,02804338	1,256150	2,25375
60	0,01850970	0,952300	3,11480
70	0,02287800	0,162501	4,09400
100	0,01537850	0,478279	7,71000
150	0,01130440	0,314271	15,7512
190	0,00840787	0,261445	23,7178
195	0,00832406	0,256905	24,7956
200	0,00805753	0,252682	25,8900
210	0,00771640	0,245074	28,1265
220	0,00703310	0,238424	30,4236
230	0,00654000	0,232577	32,7772
240	0,00624430	0,227408	35,1836
250	0,00586959	0,222815	37,6387

Рис. 2. Кривые пиков Брэгга, определенные по формуле (1) для энергий 30, 40, 50, 60, 70, 100 и 150 МэВ

линдра $D_{-0.565}$ и $D_{-1.565}$, два члена которой (как разные амплитуды) позволяют правильно описать кривые Брегга как DOZA(*z*).

Совершенствование математической модели заключалось в подборе новых коэффициентов в формуле (1) и параметра R_0 , при которых удалось получить удовлетворительное описание пиков Брегга в расширенном интервале энергий от 30 до 250 МэВ.

В табл. 1 приведены результаты работ по определению коэффициентов K_1 , K_2 и параметра R_0 для значений энергий в диапазоне 30–250 МэВ.

В диапазоне энергий 30–150 МэВ графическое представление пиков Брегга показано на рис. 2 для энергий 30, 40, 50, 60, 70, 100 и 150 МэВ.

В диапазоне энергий 150–250 МэВ графическое представление пиков Брегга показано на рис. 3 для энергий 150, 190, 195, 200, 210, 220, 230, 240 и 250 МэВ.

Далее, используя результаты расчета по формуле (1), вычисляли дозу в водном фантоме в максимуме пика Брегга в сГр на один падающий протон. При известном значении количества падающих протонов за импульс, полученном по интерфейсу связи от ускорителя, вычислитель ДТеТ осуществляет умножение и определение тем самым величины выделенной дозы.

Рис. 3. Кривые пиков Брэгга, определенные по формуле (1) для энергий 150–250 МэВ

Аппроксимация дозы полиномом 5-й степени

С учетом новых значений энергий для диапазона энергий 30–150 МэВ была проведена статистическая обработка нелинейным методом наименьших квадратов и определены параметры полинома 5-й степени. Получено новое уравнение:

> DOZA(z)=13,14007–4,82709z+ +1,07325 z^{2} –0,121409 z^{3} +0,00658 z^{4} – (2) -0,000136 z^{5} .

На рис. 4 приведены новые точки в диапазоне энергий 30–150 МэВ, определенные из формулы (1), и аппроксимирующая кривая, определяемая формулой (2).

Рис. 4. Аппроксимирующая кривая по формуле (2) и точки, определенные по формуле (1) для энергий 30–150 МэВ

"МЕДИЦИНСКАЯ ФИЗИКА"

Рис. 5. Аппроксимирующая кривая по формуле (3) и точки, определенные по формуле (1) для энергий 150–250 МэВ

Для диапазона энергий 150–250 МэВ с учетом новых значений энергий была проведена статистическая обработка нелинейным методом наименьших квадратов и определены параметры полинома 5-й степени. Получено новое уравнение:

> DOZA(z)=-0,13823+0,74755z- $-0,06985z^{2}+0,0028198z^{3}-$ (3) $-0,000054026z^{4}+4,0067\cdot10^{-7}z^{5}.$

На рис. 5 приведены новые точки в диапазоне энергий 150–250 МэВ, определенные из формулы (1), и аппроксимирующая кривая, определяемая формулой (3).

Совокупность формул (2) и (3), выведенных для практических значений применяемых интенсивностей, позволяет осуществлять конечные дозовые расчеты непосредственно вычислителем детектора в расширенном диапазоне терапевтических энергий протонов.

Выводы

Усовершенствована математическая модель с аналитической аппроксимацией кривой Брегга в простом и удобном виде, позволяющем проводить быстрые вычисления в *on-line* режиме работы для терапевтического диапазона энергий.

Авторы выражают благодарность В.Е. Балакину за практические консультации и предоставление возможности работы на протонном ускорителе. Авторы выражают благодарность А.И. Львову за консультации и поддержку работы.

Авторы выражают благодарность А.Е. Чернуха за творческие обсуждения численных методов при проведении расчетов дозных полей.

Список литературы

- Гринкевич А.В, Сиксин В.В. Установка для визуализации энерговыделения в фантоме с водой на пучке протонов радиотерапевтического ускорителя // Краткие сообщения по физике ФИАН. 2017. № 2.
- 2. Сиксин В.В. Исследование опытного образца детектора ДТеТ на пучке протонов радиотерапевтического ускорителя // Краткие сообщения по физике ФИАН. 2018. № 5.
- Сиксин В.В. Пути совершенствования детектора ДТеТ // Краткие сообщения по физике ФИАН. 2018. № 12.
- 4. Сиксин В.В. Измерение профилей пиков Брэгга детектором ДТеТ // Краткие сообщения по физике ФИАН. 2019. № 2.
- 5. Гринкевич А.В., Сиксин В.В. Аналитическое представление кривой Брэгга для работы с детектором телевизионного типа на радиотерапевтическом ускорителе // Краткие сообщения по физике ФИАН. 2018. № 2.
- 6. Официальный сайт пакета FLUKA http://www.fluka.org.
- 7. Fasso A., Ferrari A., Ranft J., Sala P.R. FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC 05/11, SLAC-R-773.
- 8. Gardey K.-U. A Pencil Beam Model for Proton Therapy-Treatment Planning and Experimental Results. Ph.D. thesis, Universitat Heidelberg, 1996.
- Oelfke U., Gardey K.-U., Blackmore E.W., Lam G.K.Y., Proton dosimetry at TRIUMF: Experimental profiles and PTRAN MC calculations // In: PTCOG XXI, San Francisco, April 25 1995.
- 10. Janni J.F. Proton range-energy tables, 1 keV–10 Ge", Atom Data Nucl. Data Tables 27, P. 147–339, 1982.

CALCULATION MODEL FOR DOSE DETERMINATION IN PROTON BEAM DOSIMETRY

V.V. Siksin¹, O.V. Sumaneve² ¹ P.N. Lebedev Physical Institute of RAS, Moscow, Russia

² Institute of High Energy Physics, Protvino, Russia

Calculations to improve the mathematical model for the calculator of a television-type detector are carried out. The parameters of the analytical formula valid for proton energies from 30 to 250 MeV, based on the combination of a parabolic cylinder functions, consistent with numerical methods and new experimental data are determined.

Key words: proton therapy, energy release region, water phantom, adaptive television camera, Bragg peak, depth dose distribution, analytical approximation, parabolic cylinder function

E-mail: antktech@yandex