АНАЛИТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ КРИВОЙ БРЭГГА ДЛЯ РАБОТЫ С ДЕТЕКТОРОМ ТЕЛЕВИЗИОННОГО ТИПА НА РАДИОТЕРАПЕВТИЧЕСКОМ УСКОРИТЕЛЕ

А.В. Гринкевич¹, В.В. Сиксин² ¹ ООО "ЭВС", Санкт-Петербург ² Физический институт им. П.Н. Лебедева РАН, Москва

Предложена математическая модель для работы вычислителя детектора телевизионного типа с аналитической аппроксимацией кривой Брэгга в простом виде для быстрых вычислений. Выведена аналитическая формула, справедливая для энергий протонов от 60 до 180 МэВ, в которой использована комбинация функций параболического цилиндра, согласуемая с численными методами и экспериментальными данными.

Ключевые слова: протоны, терапевтические пучки, водный фантом, адаптивная телевизионная камера, пик Брэгга, глубинное дозное распределение, аналитическая аппроксимация, функция параболического цилиндра

Введение

Основной проблемой в планировании протонной терапии является определение кривых зависимости доза-глубина (кривых Брэгга). Для улучшения качества протонной дозиметрии был предложен новый вид детектора "peakfinder" – детектор телевизионного типа, описанный ранее в работах [1] и [2]. Детектор телевизионного типа позволяет реализовать новую методику диагностики дозных полей, регистрируя и вычисляя точные распределения и значения основных характеристик пучка при планировании протонной терапии. Типичный вид телевизионного кадра от такого детектора показан на рис. 1.

На рис. 1 при энергии пучка протонов 80 МэВ показан результат попиксельного измерения длины "области свечения", который определяет величину *z*=51 мм (*z* – точка остановки протона в водном фантоме, которую фиксирует детектор телевизионного типа по вспышке в конце пути протона). В результате экспериментов с детектором телевизионного типа получены измеренные пики Брэгга в водном фантоме для различных энергий на терапевтическом протонном ускорителе г. Протвино [1].

В вычислитель детектора заложена математическая модель, при отработке которой удалось получить аналитическую аппроксимацию

Рис. 1. Область свечения, регистрируемая детектором телевизионного типа

кривой Брэгга в простом и удобном виде, позволяющем проводить быстрые вычисления в опline режиме работы. Выведенная аналитическая формула справедлива для энергий протонов от 60 до 180 МэВ. В предлагаемой модели используются комбинация функций параболического цилиндра и модели в замкнутом виде, описывающие кривые Брэгга. Полученная аналитическая модель согласуется с результатами численного моделирования [3], а также с экспериментальными данными, описанными в литературе [4–6].

Получение аналитической зависимости дозы от глубины энерговыделения в водном фантоме

Для получения кривой аналитического вида зависимости поглощенной дозы от глубины водного фантома были порведены измерения для 21 значения энергии с шагом 5 МэВ в интервале энергий от 60 до 150 МэВ. В расчеты поглощенной дозы закладывалась нормировка на падающий поток 1·10⁹ протонов за импульс ускорителя. Выведенная аналитическая формула позволяет вычислить поглощенную дозу в опорной точке *z* в светящемся пике Брэгга:

DOZA(z) =

$$= K_{1}e^{-39.0625(R_{0}-z)^{2}} \Big[K_{2}D_{-1.565} \Big(-12.5(R_{0}-z) \Big) + (1) \\ +140.75D_{-0.565} \Big(-12.5(R_{0}-z) \Big) \Big],$$

где K_1 и K_2 – константы; R_0 – параметр при заданной начальной энергии E_0 налетающего протона [6]; z – точка (текущая глубина) в водном фантоме, измеренная детектором; $D_{-1,565}$ и $D_{-0.565}$ – функции параболического цилиндра.

В выведенной аналитической формуле (1) основным механизмом является функция параболического цилиндра $D_{-0.565}$ и $D_{-1.565}$ [8], два члена которой (как разные амплитуды) позволяют правильно описать кривые Брегга как DOZA(*z*). Подбирая коэффициенты K_1 и K_2 в формуле (1) и параметр R_0 , удалось получить удовлетворительное описание пиков Брэгга для формулы (1) в интервале энергий 60–150 МэВ.

В табл. 1 приведены результаты определениz коэффициентов K_1 , K_2 и параметра R_0 для 10 энергий с шагом 10 МэВ.

Погрешность, с которой формула (1) описывает пик Брэгга по отношению к известным

Константы и параметры аналитического выражения (1)

Энергия,	Параметр		
МэВ	\mathcal{K}_1	K_2	<i>R</i> ₀ , см
60	0,2221	0,9495	3,1259
70	0,1893	0,7511	4,17
80	0,1717	0,6352	5,18
90	0,1516	0,5471	6,35
100	0,1407	0,4808	7,65
110	0,1277	0,4304	9,06
120	0,1172	0,3922	10,53
130	0,1048	0,3614	12,12
140	0,0997	0,3385	13,65
150	0,0882	0,3186	15,33

результатам, полученным методом Монте-Карло, например, в сравнении с МNCP [3], составляет ~2,5 %. В работе [7], где также использовалась функция параболического цилиндра, наблюдалось аналогичное совпадение зависимости поглощенной дозы от глубины z с экспериментальными данными и численным моделированием. Графическое представление пиков Брэгга показано на рис. 2.

Далее, используя результаты расчета по формуле (1), для каждой из 21 энергий, взятых с шагом 5 МэВ в интервале от 60 до 180 МэВ, в окрестности максимума пика Брэгга вычислялась средняя доза – было получено 21 значение поглощенной дозы для пучка налетающих протонов 1.10⁹ за импульс.

Рис. 2. Кривые пиков Брэгга, определенные по формуле (1)

Рис. 3. Аппроксимирующая кривая по формуле (2) и точки, определенные по формуле (1)

Аппроксимация дозы полиномом 5-й степени

По 21 значениям средней дозы, вычисленным по формуле (1), была проведена аппроксимация нелинейным методом наименыших квадратов и определены параметры полинома 5-й степени. Получено следующее уравнение:

 $DOZA(z) = 82,8367 - 16,7705z + 2,20356z^2 -$

 $-0,158881z^{3}+0,005726z^{4}-0,00008065z^{5}$. (2)

На рис. 3 приведены точки, определенные из формулы (1) и аппроксимирующая кривая, определяемая формулой (2).

Формула (2) является основой программного обеспечения детектора телевизионного типа и в представленном виде справедлива для потока пучка налетающих протонов $1 \cdot 10^9$ за импульс. Совокупность формул (2), выведенных для практических значений применяемого потока протонов, позволяет осуществлять конечные расчеты непосредственно вычислителем детектора.

Анализ точности измерения поглощенной дозы для клинического протонного пучка

Из нормативных актов в настоящее время действуют практические рекомендации МА-ГАТЭ 2004 года [9]. В главе 10 определено, что для протонов с энергией в интервале от 50 до 250 МэВ при измерении поглощенной дозы вдоль центральной оси (ось *z*) допускается стан-

Таблица 2 Допустимые аналитические ошибки в измерении величины z

Owennya MeD	Максимально допустимая	
энергия, мэв	ошибка Δz , мм	
60	1,40	
80	2,00	
90	2,40	
100	2,80	
110	3,20	
120	3,60	
140	3,80	
150	4,00	
170	4,60	

дартная неопределенность измеренной дозы 2-2,3 %.

Используя формулу (2) аппроксимации DOZA от z, была произведена оценка аналитической погрешности измерения дозы при девяти значениях энергий, для которых осуществлялись практические измерения величины z детектором телевизионного типа [1]. Закладывая в формулу (2) требование по погрешности измерения дозы, равной 2 %, определены допустимые аналитические погрешности измерения длины z, результаты вычислений которых представлены в табл. 2.

Инструментальная погрешность измерения длины по *z* определяется возможностями конструкции детектора телевизионного типа и вычисляется по формуле:

$$\Delta z_{\rm gr} = (n_{\rm n} \cdot d_{\rm n}) / v_{\rm oc}, \qquad (3)$$

где $\Delta z_{\rm дт}$ – инструментальная точность измерения длины пробега частиц детектором; $d_{\rm n}$ – размер пиксела телевизионного ПЗС-фотоприемника (6,4 мкм); $n_{\rm n}$ – число пикселов телевизионного ПЗС-фотоприемника, объединяемых в один (4); $v_{\rm oc}$ – параксиальное увеличение оптики сопряжения (–0,02).

Подставляя эти значения в формулу (3), получаем значение инструментальной погрешности детектора, равное $\Delta z_{\rm gr} = 1,28$ мм. Таким образом, телевизионный детектор позволяет измерять дозу с погрешностью, не превышающей заданную рекомендациями МАГАТЭ для энергий протонов от 60 до 180 МэВ. Отработана математическая модель с аналитической аппроксимацией кривой Брэгга в простом и удобном виде, позволяющем проводить быстрые вычисления в on-line режиме работы.

Авторы выражают благодарность В.Е. Балакину за практические консультации и предоставление возможности работы на протонном ускорителе, А.И. Львову – за консультации и поддержку работы, А.Е. Чернуха – за творческие обсуждения численных методов при проведении расчетов дозовых полей.

Список литературы

- Grinkevich A.V., Siksin V.V. Apparatus for Visualizing the Energy Release in a Water Phantom Irradiated with the Proton Beam of the Radiotherapeutic Accelerator // Bull. Lebedev Phys. Inst. 2017. Vol. 44. № 2. P. 29–32.
- Grinkevich A.V., Siksin V.V. Detector for visualizing the absorbed dose formation region in a water phantom exposed to an electron beam for biological experiments // Bull. Lebedev Phys. Inst. 2017. Vol. 44. № 5. P. 127–129.
- 3. Briesmelster J.F., MNCP-A general Monte Carlo N-particle transport code. Version 4C. Report

LA-13709-M (Los Alamos National Laboratory, Los Alamos, 2000).

- 4. Gardey K.-U, A Pencil Beam Model for Proton Therapy–Treatment Planning and Experimental Results. PhD thesis, Universitaet Heidelberg, 1996.
- Oelfke U., Gardey K.-U., Blackmore E.W., Lam G.K.Y. Proton dosimetry at TRIUMF: Experimental profiles and PTRAN MC calculations // PTCOG XXI, San Francisco, April 25 1995.
- Janni J.F. Proton range-energy tables, 1 keV 10 GeV // Data Nucl. Data Tables 1982. Vol. 27. P. 147–339,
- 7. Bortfeld T., An analytical approximation of the Bragg curve for therapeutic proton beam // Med. Phys. 1997. Vol. 24. № 120. P. 2024–2033.
- 8. Handbook of Mathematical Functions. Abramowitz M. and Stegun I.A. (Eds). – Dover, New York, 1972.
- МАГАТЭ. СТД-398. Международные практические рекомендации по дозиметрии, основанные на эталонах единицы поглощенной дозы в воде. Международное агентство по Атомной энергии, Вена, 2004.

AN ANALYTICAL APPROXIMATION OF THE BRAGG CURVE FOR WORKING THE DETECTOR TELEVISION TYPE OF THE RADIOTHERAPEUTIC ACCELERATOR

A.V. Grinkevich¹, V.V. Siksin²

¹ EVS Open Company, St. Petersburg, Russia

² Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

An analytical approximation of the Bragg curve in closed form in the region 60-170 MeV is developed. The resulting expression can be fitted to measurements within the error. The results are compared with Monte Carlo model calculations.

Key words: proton beam, water phantom, Bragg curve, depth dose distribution, analytic approximation, parabolc cylinder function

E-mail: lyu1455@yandex.ru