НОВЫЙ ИСТОЧНИК С ИТТЕРБИЕВЫМ КЕРАМИЧЕСКИМ СЕРДЕЧНИКОМ ДЛЯ БРАХИТЕРАПИИ

С.В. Акулиничев¹, В.И. Держиев¹, С.А. Чаушанский¹, А.А. Антанович², И.П. Зибров², В.П. Филоненко²

¹ Институт ядерных исследований РАН, Москва
² Институт физики высоких давлений РАН, Москва

Получены сверхплотные (плотность свыше 9 г/см³) иттербиевые керамические сердечники для источников, используемых в высокодозовой брахитерапии. Это дает возможность не только повысить активность источников, но и изменить их конструкцию, отказавшись от внутреннего титанового контейнера. Новые источники обладают технологическими преимуществами по сравнению с существующими источниками, что позволяет улучшить эффективность терапии.

Ключевые слова: брахитерапия, радинуклидные источник, 169 Yb

Введение

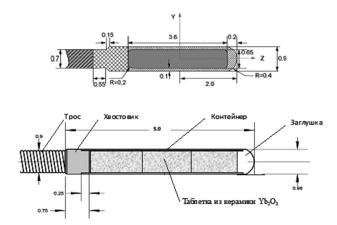
Достигнутые в мире успехи контактного облучения с высокой мощностью дозы (высокодозовой брахитерапии - ВДБ) в лечении рака предстательной железы, молочной железы и некоторых других органов настолько впечатляющи, что привели к массовому внедрению этой технологии в США и других странах [1–3]. В России основным поставщиком терапевтических аппаратов для ВДБ является ОАО Научно исследовательский институт технической физики и автоматизации (НИИТФА, Москва), который разработал конкурентоспособную модель аппарата АГАТ-ВТ. Как импортные, так и отечественные аппараты ориентированы на работу с источниками на основе радионуклидов иридия-192 и, значительно реже, кобальта-60. В настоящее время в РФ используются в основном импортные источники для ВДБ. Это приводит к нерегулярности поставок источников и их зависимости от внешних факторов, а также к высокой стоимости лечения.

В последнее время в России и за рубежом появился интерес к внедрению нового источника для ВДБ на основе иттербия-169 (169Yb),

впервые предложенного в США [4]. Перспективность использования источников на основе иттербий-169 в ВДБ для лечения ряда злокачественных новообразований была подтверждена при их сравнении с источниками с иридием-192 (см. например [5]).

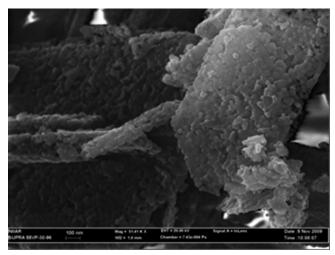
Иттербий-169 получают из изотопа иттербий-168 при облучении тепловыми нейтронами. Иттербий-168 имеет большое сечение захвата тепловых нейтронов, что позволяет получить большую удельную активность конечного изотопа и активировать непосредственно капсулированные источники. Другим достоинством иттербия-169 является более мягкий спектр гамма излучения (средняя энергия квантов 93 кэВ), что позволяет существенно снизить затраты на биологическую защиту. Кроме этого, 169 У в позволяет создать относительно более высокую дозу в удаленных от источника точках, чем традиционные для брахитерапии источники с ¹³⁷Cs и ¹⁹²Ir. Эта особенность является преимуществом при облучении гинекологических злокачественных новообра-

Компания Implant Sciences Corporation (США) в 2005 г. получила разрешение на кли-

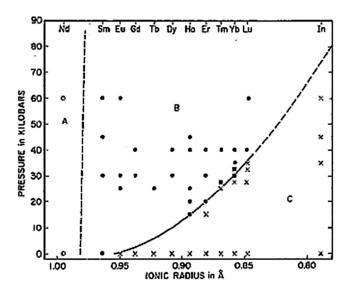

40 ПУЧЕВАЯ ТЕРАПИЯ

ническое применение ¹⁶⁹Yb в США под кодом С2637. В России ООО "Медицинские стерилизационные системы" (МСС) в 2008-2010 гг. провело работы по исследованию возможности использования изотопа иттербия-168, получаемого при лазерном разделении изотопов, для изготовления высокоактивных источников на основе иттербия-169. Технология производства стартового материала с обогащением по изотопу иттербий-168 не менее 20 % и с производительностью около 3 г/год была отработана [6] и защищена рядом патентов [7, 8]. Первые изготовленные опытные образцы источников представляли собой герметичную капсулу из титана, заполненную порошком обогащенного оксида иттербия (20% иттербия-168). Активность этих образцов не превышала 6 Ки. Для получения более высокой активности источников (>10 Ки) при сохранении их объема (порядка 1 мм³), представляется перспективным использование керамики Yb2O3 в активных сердечниках источников для ВДБ. Кроме того, применение керамических сердечников позволяет снизить экранирующее влияние титановой оболочки, исключив капсулирование активного материала во внутренний контейнер и используя герметизацию источника только в стальном контейнере терапевтического аппарата.

Экспериментальная часть


Внешний вид источника, предназначенного для использования в гамма- терапевтических аппаратах, показан на рис. 1. Керамику из иттербия получают с помощью процесса спекания под давлением, в ходе которого керамический порошок сжимается и нагревается до высоких температур, превращаясь в готовую форму с наибольшей плотностью иттербия. В качестве исходного материала для изготовления активного сердечника используется обогащенный по изотопу иттербий-168 оксид иттербия (Yb₂O₂) в виде порошка со средними размерами кристаллических частиц 20-30 нм (рис. 2). Стартовый материал оксида иттербия был получен по технологии лазерного разделения изотопов. Массовое содержание изотопа иттербия-168 в таком материале находится в пределах 20-50 %.

Плотность спрессованного оксида иттербия, в зависимости от модификации кристаллической решетки, имеет значение 9,175 г/см³



Puc. 1. Конструкции некоторых источников, используемых в annapamax Nucletron (вверху) и АГАТ-ВТ (снизу)

кубической модификации, для И 10,0-10,2 г/см 3 (по разным источникам) для моноклинной модификации. Температура фазового перехода равна 823°C. Отметим, что металлический иттербий имеет плотность при нормальных условиях 6,965 г/см³. Таким образом, атомы иттербия в его оксиде после спекания под давлением даже более плотно упакованы, чем в кристаллической решетке металла! На рис. З показаны изотермы 1000°C для оксидов редкоземельных элементов [9]. Из этих данных видно, что оксид иттербия переходит при указанной температуре из кубической фазы (С) в моноклинную фазу (В) при давлениях выше 3 ГПа (30 кбар).

Рис. 2. Наноструктура оксида иттербия под микроскопом

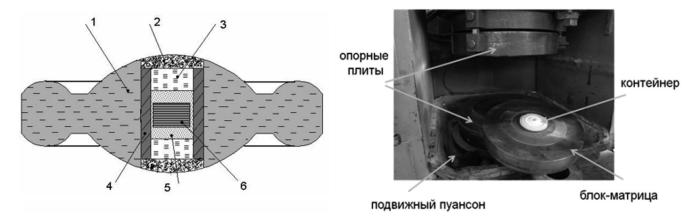


Рис. 3. Изотермы 1000° С для оксидов редкоземельных элементов [9]

Эксперименты по отработке технологии изготовления керамических сердечников выполнялись на оборудовании ИФВД РАН в г. Троицке (см. рис. 4). Для спекания порошков использовалась камера высокого давления типа "тороид" [10] с диаметром центральной лунки 15 мм, в которой снаряженный контейнер из литографского камня помещался между двумя профилированными твердосплавными наковальнями. Эксперименты проводились на прессовых установках ДО-040 усилием 2000 Тс и ДО-138Б усилием 630 Тс. Торцевые нагрева-


тели из смеси порошков гексагонального графита с гексагональным нитридом бора в весовой пропорции 1:1, таблетки из порошка гексагонального нитрида бора 3 и таблетка 5 из смеси порошков гексагонального нитрида бора и хлорида натрия (в весовой пропорции 1:1) прессовались в специально изготовленных стандартных пресс-формах. Таблетка 5 является средой, передающей давление на образец 6. Образцы из порошка оксида иттербия перед спеканием высоким давлением пол прессовались в прессформах (рис. 5), внутренний диаметр которых выбирался в зависимости от цели эксперимента. Матрица изготовлена из твердого сплава, пуансоны - из легированной закаленной стали.

В зависимости от параметров обработки (давления, температуры и времени выдержки при максимальной температуре) получались образцы керамических сердечников с различной модификацией кристаллической решетки - как кубической, так и моноклинной. На рис. 6 показаны образцы различных модификаций. В общей сложности было изготовлено более 50 образцов керамических сердечников с диаметрами в диапазоне 0,6-3,0 мм и высотой 1-3 мм. На основании проведенных экспериментов по спеканию оксида иттербия под высоким давлением найден режим спекания, при котором получаются образцы керамических сердечников с моноклинной модификацией кристаллической структуры с пикнометрической плотностью $9.8-10.08 \text{ r/cm}^3$.

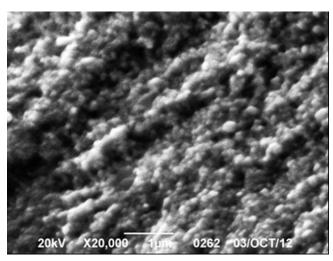
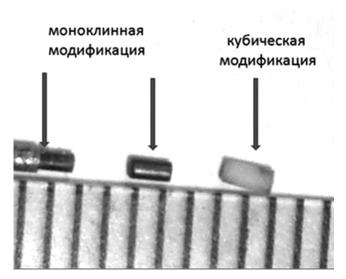


Рис. 4. Камера высокого давления тороид (слева) и рабочая зона прессовой установки ДО-040: 1 – ячейка из литографского камня, 2 – торцевые нагреватели, 3 – нитрид бора, 4 – графитовый нагреватель, 5 – смесь нитрида бора с хлоридом натрия, 6 – образец


42 ПУЧЕВАЯ ТЕРАПИЯ

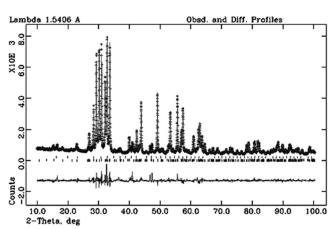

Рис. 5. Пресс-форма, состоящая из матрицы (справа) и двух пуансонов (слева)

Рис. 7. Микрострукткра образца моноклинной модификации

Рис. 6. Керамические сердечники с различной модификацией кристаллической решетки

Рис. 8. Полнопрофильный анализ образца Yb_2O_3 . Экспериментальные рентгеновские данные (+), расчетные данные (сплошная линия) и разность между 10 экспериментальными и рассчитанными данными (нижняя кривая). Позиции всех возможных брэговских отражений показаны рядами вертикальных маркеров

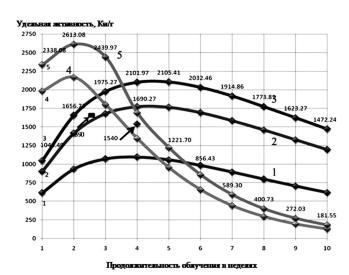
Микроструктура одного из рабочих образцов керамического сердечника с моноклинной модификацией решетки, полученная с помощью сканирующего растрового электронноого микроскопа JEOL JSM – 6390LV, показана на рис. 7. Этот образец был подвергнут также рентгеноструктурному анализу на дифрактометре AXS с двухкоординатным позиционночувствительным детектором (Bruker, Германия). Полнопрофильный анализ дифракционной картины, полученной от изучаемого по-

рошка, позволяет уточнить все структурные параметры соединения, включая и тепловые. Полученные данные представлены на рис. 8 и в табл. 1–2.

Как видно из таблиц, в керамической структуре атомы Yb1 и Yb2 окружены семью атомами кислорода, а Yb3 – шестью. Таким образом в кристаллической структуре полиэдры [YbO6] и [YbO7] соединены ребрами, образуя более плотную упаковку атомов, чем в оксиде иттербия.

Таблица 1 Координаты атомов и изотропные тепловые параметры $\mathbf{U}_{\mathrm{iso}}$ для моноклинной модификации $\mathbf{Yb_2O_3}$

Атом	X	y	Z	U_{iso}
Yb1	0,63687(18)	0,0	0,48365(21)	0,02057(57)
Yb2	0,69071(20)	0,0	0,13849(22)	0,01070(47)
Yb3	0,96739(22)	0,0	0,18810(26)	0,02028(52)
O1	0,1110(17)	0,0	0,3197(28)	0,0833(74)
O2	0,8005(24)	0,0	0,0996(33)	0,0964(100)
О3	0,7820(13)	0,0	0,3758(20)	0,0313(48)
O4	0,4689(12)	0,0	0,3325(18)	-0,0149(38)
O5	0.0	0,5	0,0	-0,0026(53)


Таблица 2 Некоторые межатомные расстояния для моноклинной модификации $\mathbf{Yb_2O_3}$

Yb1-O1 x2	2,198(15)
Yb1-O3	2,332(16)
Yb1-O3 x2	2,267(11)
Yb1-O4	2,431(17)
Yb1-O4	2,308(15)
Yb2-O1 x2	2,663(18)
Yb2-O2	1,60(4)
Yb2-O2 x2	2,669(22)
Yb2-O3	2,174(18)
Yb2-O5	2,6710(26)
Yb3-O1	2,084(22)
Yb3-O2	2,279(32)
Yb3-O4 x2	2,107(9)
Yb3-O5 x2	2,4374(16)

Оценка активности керамических источников

На рис. 9 приведены результаты расчётов зависимости удельной активности иттербия-169 в образце от времени облучения для различных степеней обогащения стартового материала [11]. Как видно из этого рисунка, экспериментальные значения удельной активности выше расчётных в 1,5–1,7 раза. Возможно это происходит из за наличия резонансов сечения активации, не учитываемых в расчетах.

Были проведены оценки достижимой активности керамического источника с удельной активностью материала в 1,54 Ки/мг, которая была получена для керамических образцов, близких по характеристикам к рассматриваемым сердечникам. Для источника, состоящего из двух сверхплотных сердечников с достигну-

Рис. 9. Удельная активность радионуклида иттербия-169 в образцах с различным обогащением стартового материала при облучении однонедельными кампаниями для двух значений плотности потока тепловых нейтронов: плотность потока – $3.6\cdot10^{14}$ н/см²·с, обогащение: 1-20%; 2-35%; 3-42%. плотность потока – $1\cdot10^{15}$ н/см²·с, обогащение: 4-35%; 5-42%, ромб – экспериментально измеренное значение удельной активности [11]; квадрат – результат облучения на реакторе HANARO[12]

той в наших экспериментах плотностью около 9 г/см³, можно рассчитывать на получение активности в 13–14 Ки. Эта оценка справедлива при облучении с умеренной плотностью потока тепловых нейтронов, вполне достижимой в облучательных каналах ряда исследовательских реакторов. При использовании для облучения высокопоточных реакторов достижимая активность керамического источника может быть увеличена на 20 % и более.

Существенную роль при достижении высокой активности играет степень обогащение материала. Например, использование стартового материала с обогащением 35–50 %, что является вполне достижимым при получении ¹⁶⁸Yb по технологии лазерного разделения изотопов иттербия, позволит получить источники с активностью 25 Ки, а на высокопоточном реакторе – до 30 Ки.

Заключение

При найденном оптимальном режиме спекания под давлением около 8 ГПа получены экспериментальные образцы керамических

44 ЛУЧЕВАЯ ТЕРАПИЯ

сердечников с моноклинной модификацией кристаллической структуры пикнометрической плотности $9.8-10.08 \text{ г/см}^3$ и плотности иттербия $8.6-8.8 \text{ г/см}^3$.

Показано, что активация керамических сердечников с 20 % содержанием изотопа 168 Yb тепловыми нейтронами с плотностью потока $3.6\cdot10^{14}$ н/(см $^2\cdot$ с) позволяет получать источники с активностью 13-14 Ки. При использовании исходного материала с более высоким обогащением можно получить активность источника до 30 Ки.

Полученные результаты демонстрируют возможность изготовления источников на основе иттербия-169 с существенно большей активностью, чем у стандартных терапевтических источников для ВДБ на основе иридия-192, имеющих начальную активностью около 10 Ки. Таким образом, можно получить готовые отечественные источники для брахитерапии с иттербием, не уступающие по основным параметрам другим используемым для этих целей источникам.

Список литературы

- 1. *Костылев В.А.* Анализ состояния радиационной онкологии в мире и в России. // Мед. физика, 2009, № 3, С. 5–20.
- 2. *Харченко В.П.* РНЦРР Минздрава России, г. Москва. Текущее состояние и перспективы развития отрасли ядерной медицины в России и за рубежом, http://www.burogro-up.ru/index.php.
- 3. Wilkinson D.A. High dose rate (HDR) brachytherapy quality assurance: a practical guide. // Biomed. Imaging Intervent. J., 2006, **2**, No. 2, e34, P. 1–7.
- 4. John J. Munro. X-Ray And Gamma Ray Emitting Temporary High Dose Rate Brachyterapy

- Source. // US Patent 7,530,941, 2009, May 12, 14 pp.
- 5. Lymperopoulou G., Papagiannis P., Sakeeillou L. et al. Comparison of radiation shielding requirements for HDR brachytherapy using ¹⁶⁹Yb and ¹⁹²Ir sources. // Med. Phys., 2006, **33**, No. 7, P. 23–29.
- 6. Derzhiev V.I, Kuznetsov V.A., Mikhal'tsov L.A. et al. Laser separation of subgram amounts ytterbium-168 isotope. // Proc. Int. Conf. on Lasers'96. Portland Oregon, December 2-6, 1996. STS Press, McLean, VA. 1997, P. 441–448.
- 7. Держиев В.И., Чаушанский С.А. Устройство для получения изотопов иттербия. Патент на полезную модель, регистрационный № 2010112659 от 02.04.2010.
- 8. Держиев В.И., Чаушанский С.А. Способ получения изотопов иттербия и устройство для его осуществления. Патент РФ на изобретение RU 2446003 C2, приоритет изобретения 19 марта 2010 г.
- 9. *Hoekstra H.R.*, *Gingerich K.A.* High-pressure B-type polymorph of some rare-earth sesquioxides. // Science, 1964, **146**, P. 1163–1174.
- 10. *Khvostantsev L.G.*, *Vereshchagin L.F.*, *Novikov A.P.* Device of toroid type for high pressure generation. // High Temp.-High Press., 1977, **9**, No. 3, P. 637–640.
- 11. Рогозев Б.И., Ромачевский К.Е., Пунин А.В. и соавт. Микроисточники с Yb-169 для высокодозовой брахитерапии. // Доклад на 7-ой Международной конференции по изотопам, Москва, 2011.
- 12. Son K.J., Lee J.S., Park U.J. et al. Development of miniature radiation sources for medical and non-destructive testing applications. // Final report of a coordinated research project 2001–2005, IAEA-TECDOC-1512, 2006, P. 93–103.

NEW SOURCE WITH YTTERBIUM CERAMIC CORE FOR BRACHYTHERAPY

S.V. Akulinichev¹, V.I. Derzhiev¹, S.A. Chaushansky¹, A.A. Antanovich², V.P. Filonenko², I.P. Zibrov²

¹ Institute for Nuclear Research of RAS, Moscow, Russia

² Institute of High Pressure Physics of RAS, Moscow, Russia

The extra high-density ceramic cores of ytterbium oxide were manufactured for sources, used in high-dose rate brachytherapy. Ceramics density reaches the limit of the theoretical value (above 9 g/cm^3). This allows to avoid inner titanium container of sources. New sources have technological advantages and allows to improve the therapy quality, compared to other sources.

Key words: brachytherapy, radionuclide sources, 169Yb

E-mail: akulinic@inr.ru